Abstract:Vision Language Models (VLMs) have been successful at many chart comprehension tasks that require attending to both the images of charts and their accompanying textual descriptions. However, it is not well established how VLM performance profiles map to human-like behaviors. If VLMs can be shown to have human-like chart comprehension abilities, they can then be applied to a broader range of tasks, such as designing and evaluating visualizations for human readers. This paper lays the foundations for such applications by evaluating the accuracy of zero-shot prompting of VLMs on graphical perception tasks with established human performance profiles. Our findings reveal that VLMs perform similarly to humans under specific task and style combinations, suggesting that they have the potential to be used for modeling human performance. Additionally, variations to the input stimuli show that VLM accuracy is sensitive to stylistic changes such as fill color and chart contiguity, even when the underlying data and data mappings are the same.
Abstract:Recent studies show evidence for emergent cognitive abilities in Large Pre-trained Language Models (PLMs). The increasing cognitive alignment of these models has made them candidates for cognitive science theories. Prior research into the emergent cognitive abilities of PLMs has largely been path-independent to model training, i.e., has focused on the final model weights and not the intermediate steps. However, building plausible models of human cognition using PLMs would benefit from considering the developmental alignment of their performance during training to the trajectories of children's thinking. Guided by psychometric tests of human intelligence, we choose four sets of tasks to investigate the alignment of ten popular families of PLMs and evaluate their available intermediate and final training steps. These tasks are Numerical ability, Linguistic abilities, Conceptual understanding, and Fluid reasoning. We find a striking regularity: regardless of model size, the developmental trajectories of PLMs consistently exhibit a window of maximal alignment to human cognitive development. Before that window, training appears to endow "blank slate" models with the requisite structure to be poised to rapidly learn from experience. After that window, training appears to serve the engineering goal of reducing loss but not the scientific goal of increasing alignment with human cognition.
Abstract:This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload? This study focuses on the topic of LLMs assist NLP Researchers, particularly examining the effectiveness of LLM in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with "deficiency" labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) "LLMs as Reviewers", how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) "LLMs as Metareviewers", how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.
Abstract:With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Text watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques, through a comprehensive survey of the research literature. Our work has two key advantages, (1) we analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, watermarking addition, and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research in protecting text authorship. This extensive coverage and detailed analysis sets our work apart, offering valuable insights into the evolving landscape of text watermarking in language models.
Abstract:How well do representations learned by ML models align with those of humans? Here, we consider concept representations learned by deep learning models and evaluate whether they show a fundamental behavioral signature of human concepts, the typicality effect. This is the finding that people judge some instances (e.g., robin) of a category (e.g., Bird) to be more typical than others (e.g., penguin). Recent research looking for human-like typicality effects in language and vision models has focused on models of a single modality, tested only a small number of concepts, and found only modest correlations with human typicality ratings. The current study expands this behavioral evaluation of models by considering a broader range of language (N = 8) and vision (N = 10) model architectures. It also evaluates whether the combined typicality predictions of vision + language model pairs, as well as a multimodal CLIP-based model, are better aligned with human typicality judgments than those of models of either modality alone. Finally, it evaluates the models across a broader range of concepts (N = 27) than prior studies. There were three important findings. First, language models better align with human typicality judgments than vision models. Second, combined language and vision models (e.g., AlexNet + MiniLM) better predict the human typicality data than the best-performing language model (i.e., MiniLM) or vision model (i.e., ViT-Huge) alone. Third, multimodal models (i.e., CLIP ViT) show promise for explaining human typicality judgments. These results advance the state-of-the-art in aligning the conceptual representations of ML models and humans. A methodological contribution is the creation of a new image set for testing the conceptual alignment of vision models.
Abstract:When reading temporarily ambiguous garden-path sentences, misinterpretations sometimes linger past the point of disambiguation. This phenomenon has traditionally been studied in psycholinguistic experiments using online measures such as reading times and offline measures such as comprehension questions. Here, we investigate the processing of garden-path sentences and the fate of lingering misinterpretations using four large language models (LLMs): GPT-2, LLaMA-2, Flan-T5, and RoBERTa. The overall goal is to evaluate whether humans and LLMs are aligned in their processing of garden-path sentences and in the lingering misinterpretations past the point of disambiguation, especially when extra-syntactic information (e.g., a comma delimiting a clause boundary) is present to guide processing. We address this goal using 24 garden-path sentences that have optional transitive and reflexive verbs leading to temporary ambiguities. For each sentence, there are a pair of comprehension questions corresponding to the misinterpretation and the correct interpretation. In three experiments, we (1) measure the dynamic semantic interpretations of LLMs using the question-answering task; (2) track whether these models shift their implicit parse tree at the point of disambiguation (or by the end of the sentence); and (3) visualize the model components that attend to disambiguating information when processing the question probes. These experiments show promising alignment between humans and LLMs in the processing of garden-path sentences, especially when extra-syntactic information is available to guide processing.
Abstract:Realistic practice and tailored feedback are key processes for training peer counselors with clinical skills. However, existing mechanisms of providing feedback largely rely on human supervision. Peer counselors often lack mechanisms to receive detailed feedback from experienced mentors, making it difficult for them to support the large number of people with mental health issues who use peer counseling. Our work aims to leverage large language models to provide contextualized and multi-level feedback to empower peer counselors, especially novices, at scale. To achieve this, we co-design with a group of senior psychotherapy supervisors to develop a multi-level feedback taxonomy, and then construct a publicly available dataset with comprehensive feedback annotations of 400 emotional support conversations. We further design a self-improvement method on top of large language models to enhance the automatic generation of feedback. Via qualitative and quantitative evaluation with domain experts, we demonstrate that our method minimizes the risk of potentially harmful and low-quality feedback generation which is desirable in such high-stakes scenarios.
Abstract:Neural networks often suffer from catastrophic interference (CI): performance on previously learned tasks drops off significantly when learning a new task. This contrasts strongly with humans, who can sequentially learn new tasks without appreciably forgetting previous tasks. Prior work has explored various techniques for mitigating CI such as regularization, rehearsal, generative replay, and distillation methods. The current work takes a different approach, one guided by cognitive science research showing that in naturalistic environments, the probability of encountering a task decreases as a power-law of the time since it was last performed. We argue that a realistic evaluation of techniques for the mitigation of CI should be performed in simulated naturalistic learning environments. Thus, we evaluate the extent of mitigation of CI when training simple rehearsal-based methods in power-law environments similar to the ones humans face. Our work explores this novel rehearsal-based approach for a domain-incremental task: learning permutations in the MNIST task. We compare our rehearsal environment with other baselines to show its efficacy in promoting continual learning. Additionally, we investigate whether this environment shows forward facilitation, i.e., faster learning of later tasks. Next, we explore the robustness of our learning environment to the number of tasks, model size, and amount of data rehearsed after each task. Notably, our results show that the performance is comparable or superior to that of models trained using popular regularization methods and also to rehearsals in non-power-law environments. The benefits of this training paradigm include simplicity and the lack of a need for extra neural circuitry. In addition, because our method is orthogonal to other methods, future research can combine training in power-law environments with other continual learning mechanisms.
Abstract:Pre-trained Large Language Models (LLMs) have shown success in a diverse set of language inference and understanding tasks. The pre-training stage of LLMs looks at a large corpus of raw textual data. The BabyLM shared task compares LLM pre-training to human language acquisition, where the number of tokens seen by 13-year-old kids is magnitudes smaller than the number of tokens seen by LLMs. In this work, we pre-train and evaluate LLMs on their ability to learn contextual word representations using roughly the same number of tokens as seen by children. We provide a strong set of baselines; with different architectures, evaluation of changes in performance across epochs, and reported pre-training metrics for the strict small and strict tracks of the task. We also try to loosely replicate the RoBERTa baseline given by the task organizers to observe the training robustness to hyperparameter selection and replicability. We provide the submission details to the strict and strict-small tracks in this report.
Abstract:Large Language Models (LLMs) do not differentially represent numbers, which are pervasive in text. In contrast, neuroscience research has identified distinct neural representations for numbers and words. In this work, we investigate how well popular LLMs capture the magnitudes of numbers (e.g., that $4 < 5$) from a behavioral lens. Prior research on the representational capabilities of LLMs evaluates whether they show human-level performance, for instance, high overall accuracy on standard benchmarks. Here, we ask a different question, one inspired by cognitive science: How closely do the number representations of LLMscorrespond to those of human language users, who typically demonstrate the distance, size, and ratio effects? We depend on a linking hypothesis to map the similarities among the model embeddings of number words and digits to human response times. The results reveal surprisingly human-like representations across language models of different architectures, despite the absence of the neural circuitry that directly supports these representations in the human brain. This research shows the utility of understanding LLMs using behavioral benchmarks and points the way to future work on the number of representations of LLMs and their cognitive plausibility.