Fellow, IEEE
Abstract:Joint source-channel coding systems based on deep neural networks (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission. Existing methods primarily focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality. This can lead to severe perceptual degradation when transmitting images under extreme conditions, such as low bandwidth compression ratios (BCRs) and low signal-to-noise ratios (SNRs). In this work, we propose SING, a novel two-stage JSCC framework that formulates the recovery of high-quality source images from corrupted reconstructions as an inverse problem. Depending on the availability of information about the DeepJSCC encoder/decoder and the channel at the receiver, SING can either approximate the stochastic degradation as a linear transformation, or leverage invertible neural networks (INNs) for precise modeling. Both approaches enable the seamless integration of diffusion models into the reconstruction process, enhancing perceptual quality. Experimental results demonstrate that SING outperforms DeepJSCC and other approaches, delivering superior perceptual quality even under extremely challenging conditions, including scenarios with significant distribution mismatches between the training and test data.
Abstract:Existing image steganography methods face fundamental limitations in hiding capacity (typically $1\sim7$ images) due to severe information interference and uncoordinated capacity-distortion trade-off. We propose SMILENet, a novel synergistic framework that achieves 25 image hiding through three key innovations: (i) A synergistic network architecture coordinates reversible and non-reversible operations to efficiently exploit information redundancy in both secret and cover images. The reversible Invertible Cover-Driven Mosaic (ICDM) module and Invertible Mosaic Secret Embedding (IMSE) module establish cover-guided mosaic transformations and representation embedding with mathematically guaranteed invertibility for distortion-free embedding. The non-reversible Secret Information Selection (SIS) module and Secret Detail Enhancement (SDE) module implement learnable feature modulation for critical information selection and enhancement. (ii) A unified training strategy that coordinates complementary modules to achieve 3.0x higher capacity than existing methods with superior visual quality. (iii) Last but not least, we introduce a new metric to model Capacity-Distortion Trade-off for evaluating the image steganography algorithms that jointly considers hiding capacity and distortion, and provides a unified evaluation approach for accessing results with different number of secret image. Extensive experiments on DIV2K, Paris StreetView and ImageNet1K show that SMILENet outperforms state-of-the-art methods in terms of hiding capacity, recovery quality as well as security against steganalysis methods.
Abstract:Single Image Reflection Removal (SIRR) is a canonical blind source separation problem and refers to the issue of separating a reflection-contaminated image into a transmission and a reflection image. The core challenge lies in minimizing the commonalities among different sources. Existing deep learning approaches either neglect the significance of feature interactions or rely on heuristically designed architectures. In this paper, we propose a novel Deep Exclusion unfolding Network (DExNet), a lightweight, interpretable, and effective network architecture for SIRR. DExNet is principally constructed by unfolding and parameterizing a simple iterative Sparse and Auxiliary Feature Update (i-SAFU) algorithm, which is specifically designed to solve a new model-based SIRR optimization formulation incorporating a general exclusion prior. This general exclusion prior enables the unfolded SAFU module to inherently identify and penalize commonalities between the transmission and reflection features, ensuring more accurate separation. The principled design of DExNet not only enhances its interpretability but also significantly improves its performance. Comprehensive experiments on four benchmark datasets demonstrate that DExNet achieves state-of-the-art visual and quantitative results while utilizing only approximately 8\% of the parameters required by leading methods.
Abstract:Generative diffusion models are becoming one of the most popular prior in image restoration (IR) tasks due to their remarkable ability to generate realistic natural images. Despite achieving satisfactory results, IR methods based on diffusion models present several limitations. First of all, most non-blind approaches require an analytical expression of the degradation model to guide the sampling process. Secondly, most existing blind approaches rely on families of pre-defined degradation models for training their deep networks. The above issues limit the flexibility of these approaches and so their ability to handle real-world degradation tasks. In this paper, we propose a novel INN-guided probabilistic diffusion algorithm for non-blind and blind image restoration, namely INDIGO and BlindINDIGO, which combines the merits of the perfect reconstruction property of invertible neural networks (INN) with the strong generative capabilities of pre-trained diffusion models. Specifically, we train the forward process of the INN to simulate an arbitrary degradation process and use the inverse to obtain an intermediate image that we use to guide the reverse diffusion sampling process through a gradient step. We also introduce an initialization strategy, to further improve the performance and inference speed of our algorithm. Experiments demonstrate that our algorithm obtains competitive results compared with recently leading methods both quantitatively and visually on synthetic and real-world low-quality images.
Abstract:Diffusion models have revolutionized image synthesis, garnering significant research interest in recent years. Diffusion is an iterative algorithm in which samples are generated step-by-step, starting from pure noise. This process introduces the notion of diffusion trajectories, i.e., paths from the standard Gaussian distribution to the target image distribution. In this context, we study discriminative algorithms operating on these trajectories. Specifically, given a pre-trained diffusion model, we consider the problem of classifying images as part of the training dataset, generated by the model or originating from an external source. Our approach demonstrates the presence of patterns across steps that can be leveraged for classification. We also conduct ablation studies, which reveal that using higher-order gradient features to characterize the trajectories leads to significant performance gains and more robust algorithms.
Abstract:High-quality element distribution maps enable precise analysis of the material composition and condition of Old Master paintings. These maps are typically produced from data acquired through Macro X-ray fluorescence (MA-XRF) scanning, a non-invasive technique that collects spectral information. However, MA-XRF is often limited by a trade-off between acquisition time and resolution. Achieving higher resolution requires longer scanning times, which can be impractical for detailed analysis of large artworks. Super-resolution MA-XRF provides an alternative solution by enhancing the quality of MA-XRF scans while reducing the need for extended scanning sessions. This paper introduces a tailored super-resolution approach to improve MA-XRF analysis of Old Master paintings. Our method proposes a novel adversarial neural network architecture for MA-XRF, inspired by the Learned Iterative Shrinkage-Thresholding Algorithm. It is specifically designed to work in an unsupervised manner, making efficient use of the limited available data. This design avoids the need for extensive datasets or pre-trained networks, allowing it to be trained using just a single high-resolution RGB image alongside low-resolution MA-XRF data. Numerical results demonstrate that our method outperforms existing state-of-the-art super-resolution techniques for MA-XRF scans of Old Master paintings.
Abstract:Traditional sampling schemes often assume that the sampling locations are known. Motivated by the recent bioimaging technique known as cryogenic electron microscopy (cryoEM), we consider the problem of reconstructing an unknown 3D structure from samples of its 2D tomographic projections at unknown angles. We focus on 3D convex bilevel polyhedra and 3D point sources and show that the exact estimation of these 3D structures and of the projection angles can be achieved up to an orthogonal transformation. Moreover, we are able to show that the minimum number of projections needed to achieve perfect reconstruction is independent of the complexity of the signal model. By using the divergence theorem, we are able to retrieve the projected vertices of the polyhedron from the sampled tomographic projections, and then we show how to retrieve the 3D object and the projection angles from this information. The proof of our theorem is constructive and leads to a robust reconstruction algorithm, which we validate under various conditions. Finally, we apply aspects of the proposed framework to calibration of X-ray computed tomography (CT) data.
Abstract:Deep neural networks for event-based video reconstruction often suffer from a lack of interpretability and have high memory demands. A lightweight network called CISTA-LSTC has recently been introduced showing that high-quality reconstruction can be achieved through the systematic design of its architecture. However, its modelling assumption that input signals and output reconstructed frame share the same sparse representation neglects the displacement caused by motion. To address this, we propose warping the input intensity frames and sparse codes to enhance reconstruction quality. A CISTA-Flow network is constructed by integrating a flow network with CISTA-LSTC for motion compensation. The system relies solely on events, in which predicted flow aids in reconstruction and then reconstructed frames are used to facilitate flow estimation. We also introduce an iterative training framework for this combined system. Results demonstrate that our approach achieves state-of-the-art reconstruction accuracy and simultaneously provides reliable dense flow estimation. Furthermore, our model exhibits flexibility in that it can integrate different flow networks, suggesting its potential for further performance enhancement.
Abstract:Joint source-channel coding schemes based on deep neural networks (DeepJSCC) have recently achieved remarkable performance for wireless image transmission. However, these methods usually focus only on the distortion of the reconstructed signal at the receiver side with respect to the source at the transmitter side, rather than the perceptual quality of the reconstruction which carries more semantic information. As a result, severe perceptual distortion can be introduced under extreme conditions such as low bandwidth and low signal-to-noise ratio. In this work, we propose CommIN, which views the recovery of high-quality source images from degraded reconstructions as an inverse problem. To address this, CommIN combines Invertible Neural Networks (INN) with diffusion models, aiming for superior perceptual quality. Through experiments, we show that our CommIN significantly improves the perceptual quality compared to DeepJSCC under extreme conditions and outperforms other inverse problem approaches used in DeepJSCC.
Abstract:Recently it has been shown that using diffusion models for inverse problems can lead to remarkable results. However, these approaches require a closed-form expression of the degradation model and can not support complex degradations. To overcome this limitation, we propose a method (INDigo) that combines invertible neural networks (INN) and diffusion models for general inverse problems. Specifically, we train the forward process of INN to simulate an arbitrary degradation process and use the inverse as a reconstruction process. During the diffusion sampling process, we impose an additional data-consistency step that minimizes the distance between the intermediate result and the INN-optimized result at every iteration, where the INN-optimized image is composed of the coarse information given by the observed degraded image and the details generated by the diffusion process. With the help of INN, our algorithm effectively estimates the details lost in the degradation process and is no longer limited by the requirement of knowing the closed-form expression of the degradation model. Experiments demonstrate that our algorithm obtains competitive results compared with recently leading methods both quantitatively and visually. Moreover, our algorithm performs well on more complex degradation models and real-world low-quality images.