High-quality element distribution maps enable precise analysis of the material composition and condition of Old Master paintings. These maps are typically produced from data acquired through Macro X-ray fluorescence (MA-XRF) scanning, a non-invasive technique that collects spectral information. However, MA-XRF is often limited by a trade-off between acquisition time and resolution. Achieving higher resolution requires longer scanning times, which can be impractical for detailed analysis of large artworks. Super-resolution MA-XRF provides an alternative solution by enhancing the quality of MA-XRF scans while reducing the need for extended scanning sessions. This paper introduces a tailored super-resolution approach to improve MA-XRF analysis of Old Master paintings. Our method proposes a novel adversarial neural network architecture for MA-XRF, inspired by the Learned Iterative Shrinkage-Thresholding Algorithm. It is specifically designed to work in an unsupervised manner, making efficient use of the limited available data. This design avoids the need for extensive datasets or pre-trained networks, allowing it to be trained using just a single high-resolution RGB image alongside low-resolution MA-XRF data. Numerical results demonstrate that our method outperforms existing state-of-the-art super-resolution techniques for MA-XRF scans of Old Master paintings.