Abstract:Federated learning (FL) enables collaborative model training using decentralized private data from multiple clients. While FL has shown robustness against poisoning attacks with basic defenses, our research reveals new vulnerabilities stemming from non-independent and identically distributed (non-IID) data among clients. These vulnerabilities pose a substantial risk of model poisoning in real-world FL scenarios. To demonstrate such vulnerabilities, we develop a novel collaborative backdoor poisoning attack called CollaPois. In this attack, we distribute a single pre-trained model infected with a Trojan to a group of compromised clients. These clients then work together to produce malicious gradients, causing the FL model to consistently converge towards a low-loss region centered around the Trojan-infected model. Consequently, the impact of the Trojan is amplified, especially when the benign clients have diverse local data distributions and scattered local gradients. CollaPois stands out by achieving its goals while involving only a limited number of compromised clients, setting it apart from existing attacks. Also, CollaPois effectively avoids noticeable shifts or degradation in the FL model's performance on legitimate data samples, allowing it to operate stealthily and evade detection by advanced robust FL algorithms. Thorough theoretical analysis and experiments conducted on various benchmark datasets demonstrate the superiority of CollaPois compared to state-of-the-art backdoor attacks. Notably, CollaPois bypasses existing backdoor defenses, especially in scenarios where clients possess diverse data distributions. Moreover, the results show that CollaPois remains effective even when involving a small number of compromised clients. Notably, clients whose local data is closely aligned with compromised clients experience higher risks of backdoor infections.
Abstract:Federated Learning (FL) allows collaborative training among multiple devices without data sharing, thus enabling privacy-sensitive applications on mobile or Internet of Things (IoT) devices, such as mobile health and asset tracking. However, designing an FL system with good model utility that works with low computation/communication overhead on heterogeneous, resource-constrained mobile/IoT devices is challenging. To address this problem, this paper proposes FedX, a novel adaptive model decomposition and quantization FL system for IoT. To balance utility with resource constraints on IoT devices, FedX decomposes a global FL model into different sub-networks with adaptive numbers of quantized bits for different devices. The key idea is that a device with fewer resources receives a smaller sub-network for lower overhead but utilizes a larger number of quantized bits for higher model utility, and vice versa. The quantization operations in FedX are done at the server to reduce the computational load on devices. FedX iteratively minimizes the losses in the devices' local data and in the server's public data using quantized sub-networks under a regularization term, and thus it maximizes the benefits of combining FL with model quantization through knowledge sharing among the server and devices in a cost-effective training process. Extensive experiments show that FedX significantly improves quantization times by up to 8.43X, on-device computation time by 1.5X, and total end-to-end training time by 1.36X, compared with baseline FL systems. We guarantee the global model convergence theoretically and validate local model convergence empirically, highlighting FedX's optimization efficiency.
Abstract:Despite its significant benefits in enhancing the transparency and trustworthiness of artificial intelligence (AI) systems, explainable AI (XAI) has yet to reach its full potential in real-world applications. One key challenge is that XAI can unintentionally provide adversaries with insights into black-box models, inevitably increasing their vulnerability to various attacks. In this paper, we develop a novel explanation-driven adversarial attack against black-box classifiers based on feature substitution, called XSub. The key idea of XSub is to strategically replace important features (identified via XAI) in the original sample with corresponding important features from a "golden sample" of a different label, thereby increasing the likelihood of the model misclassifying the perturbed sample. The degree of feature substitution is adjustable, allowing us to control how much of the original samples information is replaced. This flexibility effectively balances a trade-off between the attacks effectiveness and its stealthiness. XSub is also highly cost-effective in that the number of required queries to the prediction model and the explanation model in conducting the attack is in O(1). In addition, XSub can be easily extended to launch backdoor attacks in case the attacker has access to the models training data. Our evaluation demonstrates that XSub is not only effective and stealthy but also cost-effective, enabling its application across a wide range of AI models.
Abstract:Federated learning (FL) was originally regarded as a framework for collaborative learning among clients with data privacy protection through a coordinating server. In this paper, we propose a new active membership inference (AMI) attack carried out by a dishonest server in FL. In AMI attacks, the server crafts and embeds malicious parameters into global models to effectively infer whether a target data sample is included in a client's private training data or not. By exploiting the correlation among data features through a non-linear decision boundary, AMI attacks with a certified guarantee of success can achieve severely high success rates under rigorous local differential privacy (LDP) protection; thereby exposing clients' training data to significant privacy risk. Theoretical and experimental results on several benchmark datasets show that adding sufficient privacy-preserving noise to prevent our attack would significantly damage FL's model utility.
Abstract:Recent development in the field of explainable artificial intelligence (XAI) has helped improve trust in Machine-Learning-as-a-Service (MLaaS) systems, in which an explanation is provided together with the model prediction in response to each query. However, XAI also opens a door for adversaries to gain insights into the black-box models in MLaaS, thereby making the models more vulnerable to several attacks. For example, feature-based explanations (e.g., SHAP) could expose the top important features that a black-box model focuses on. Such disclosure has been exploited to craft effective backdoor triggers against malware classifiers. To address this trade-off, we introduce a new concept of achieving local differential privacy (LDP) in the explanations, and from that we establish a defense, called XRand, against such attacks. We show that our mechanism restricts the information that the adversary can learn about the top important features, while maintaining the faithfulness of the explanations.
Abstract:Graph neural networks (GNNs) are susceptible to privacy inference attacks (PIAs), given their ability to learn joint representation from features and edges among nodes in graph data. To prevent privacy leakages in GNNs, we propose a novel heterogeneous randomized response (HeteroRR) mechanism to protect nodes' features and edges against PIAs under differential privacy (DP) guarantees without an undue cost of data and model utility in training GNNs. Our idea is to balance the importance and sensitivity of nodes' features and edges in redistributing the privacy budgets since some features and edges are more sensitive or important to the model utility than others. As a result, we derive significantly better randomization probabilities and tighter error bounds at both levels of nodes' features and edges departing from existing approaches, thus enabling us to maintain high data utility for training GNNs. An extensive theoretical and empirical analysis using benchmark datasets shows that HeteroRR significantly outperforms various baselines in terms of model utility under rigorous privacy protection for both nodes' features and edges. That enables us to defend PIAs in DP-preserving GNNs effectively.
Abstract:In this paper, we introduce a novel concept of user-entity differential privacy (UeDP) to provide formal privacy protection simultaneously to both sensitive entities in textual data and data owners in learning natural language models (NLMs). To preserve UeDP, we developed a novel algorithm, called UeDP-Alg, optimizing the trade-off between privacy loss and model utility with a tight sensitivity bound derived from seamlessly combining user and sensitive entity sampling processes. An extensive theoretical analysis and evaluation show that our UeDP-Alg outperforms baseline approaches in model utility under the same privacy budget consumption on several NLM tasks, using benchmark datasets.
Abstract:In this paper, we show that the process of continually learning new tasks and memorizing previous tasks introduces unknown privacy risks and challenges to bound the privacy loss. Based upon this, we introduce a formal definition of Lifelong DP, in which the participation of any data tuples in the training set of any tasks is protected, under a consistently bounded DP protection, given a growing stream of tasks. A consistently bounded DP means having only one fixed value of the DP privacy budget, regardless of the number of tasks. To preserve Lifelong DP, we propose a scalable and heterogeneous algorithm, called L2DP-ML with a streaming batch training, to efficiently train and continue releasing new versions of an L2M model, given the heterogeneity in terms of data sizes and the training order of tasks, without affecting DP protection of the private training set. An end-to-end theoretical analysis and thorough evaluations show that our mechanism is significantly better than baseline approaches in preserving Lifelong DP. The implementation of L2DP-ML is available at: https://github.com/haiphanNJIT/PrivateDeepLearning.
Abstract:This paper explores previously unknown backdoor risks in HyperNet-based personalized federated learning (HyperNetFL) through poisoning attacks. Based upon that, we propose a novel model transferring attack (called HNTROJ), i.e., the first of its kind, to transfer a local backdoor infected model to all legitimate and personalized local models, which are generated by the HyperNetFL model, through consistent and effective malicious local gradients computed across all compromised clients in the whole training process. As a result, HNTROJ reduces the number of compromised clients needed to successfully launch the attack without any observable signs of sudden shifts or degradation regarding model utility on legitimate data samples making our attack stealthy. To defend against HNTROJ, we adapted several backdoor-resistant FL training algorithms into HyperNetFL. An extensive experiment that is carried out using several benchmark datasets shows that HNTROJ significantly outperforms data poisoning and model replacement attacks and bypasses robust training algorithms.
Abstract:In this paper, we focus on preserving differential privacy (DP) in continual learning (CL), in which we train ML models to learn a sequence of new tasks while memorizing previous tasks. We first introduce a notion of continual adjacent databases to bound the sensitivity of any data record participating in the training process of CL. Based upon that, we develop a new DP-preserving algorithm for CL with a data sampling strategy to quantify the privacy risk of training data in the well-known Averaged Gradient Episodic Memory (A-GEM) approach by applying a moments accountant. Our algorithm provides formal guarantees of privacy for data records across tasks in CL. Preliminary theoretical analysis and evaluations show that our mechanism tightens the privacy loss while maintaining a promising model utility.