TTIC
Abstract:While recent works (e.g. o1, DeepSeek R1) have demonstrated great promise of using long Chain-of-Thought (CoT) to improve reasoning capabilities of language models, scaling it up during test-time is challenging due to inefficient memory usage -- intermediate computations accumulate indefinitely in context even no longer needed for future thoughts. We propose PENCIL, which incorporates a reduction mechanism into the autoregressive generation process, allowing the model to recursively clean up intermediate thoughts based on patterns learned from training. With this reduction mechanism, PENCIL significantly reduces the maximal context length required during generation, and thus can generate longer thoughts with limited memory, solving larger-scale problems given more thinking time. For example, we demonstrate PENCIL achieves 97\% accuracy on the challenging Einstein's puzzle -- a task even large models like GPT-4 struggle with -- using only a small 25M-parameter transformer with 2048 context length. Theoretically, we prove PENCIL can perform universal space-efficient computation by simulating Turing machines with optimal time and space complexity, and thus can solve arbitrary computational tasks that would otherwise be intractable given context window constraints.
Abstract:For a given base class of sequence-to-next-token generators, we consider learning prompt-to-answer mappings obtained by iterating a fixed, time-invariant generator for multiple steps, thus generating a chain-of-thought, and then taking the final token as the answer. We formalize the learning problems both when the chain-of-thought is observed and when training only on prompt-answer pairs, with the chain-of-thought latent. We analyze the sample and computational complexity both in terms of general properties of the base class (e.g. its VC dimension) and for specific base classes such as linear thresholds. We present a simple base class that allows for universal representability and computationally tractable chain-of-thought learning. Central to our development is that time invariance allows for sample complexity that is independent of the length of the chain-of-thought. Attention arises naturally in our construction.
Abstract:Weak-to-Strong Generalization (Burns et al., 2024) is the phenomenon whereby a strong student, say GPT-4, learns a task from a weak teacher, say GPT-2, and ends up significantly outperforming the teacher. We show that this phenomenon does not require a strong learner like GPT-4. We consider student and teacher that are random feature models, described by two-layer networks with a random and fixed bottom layer and a trained top layer. A "weak" teacher, with a small number of units (i.e. random features), is trained on the population, and a "strong" student, with a much larger number of units (i.e. random features), is trained only on labels generated by the weak teacher. We demonstrate, prove, and understand how the student can outperform the teacher, even though trained only on data labeled by the teacher. We also explain how such weak-to-strong generalization is enabled by early stopping. Importantly, we also show the quantitative limits of weak-to-strong generalization in this model.
Abstract:We provide a complete characterization of the entire regularization curve of a modified two-part-code Minimum Description Length (MDL) learning rule for binary classification, based on an arbitrary prior or description language. \citet{GL} previously established the lack of asymptotic consistency, from an agnostic PAC (frequentist worst case) perspective, of the MDL rule with a penalty parameter of $\lambda=1$, suggesting that it underegularizes. Driven by interest in understanding how benign or catastrophic under-regularization and overfitting might be, we obtain a precise quantitative description of the worst case limiting error as a function of the regularization parameter $\lambda$ and noise level (or approximation error), significantly tightening the analysis of \citeauthor{GL} for $\lambda=1$ and extending it to all other choices of $\lambda$.
Abstract:We provide finite sample upper and lower bounds on the Binomial tail probability which are a direct application of Sanov's theorem. We then use these to obtain high probability upper and lower bounds on the minimum of i.i.d. Binomial random variables. Both bounds are finite sample, asymptotically tight, and expressed in terms of the KL-divergence.
Abstract:We study the overfitting behavior of fully connected deep Neural Networks (NNs) with binary weights fitted to perfectly classify a noisy training set. We consider interpolation using both the smallest NN (having the minimal number of weights) and a random interpolating NN. For both learning rules, we prove overfitting is tempered. Our analysis rests on a new bound on the size of a threshold circuit consistent with a partial function. To the best of our knowledge, ours are the first theoretical results on benign or tempered overfitting that: (1) apply to deep NNs, and (2) do not require a very high or very low input dimension.
Abstract:We present a framework for designing scores to summarize performance metrics. Our design has two multi-criteria objectives: (1) improving on scores should improve all performance metrics, and (2) achieving pareto-optimal scores should achieve pareto-optimal metrics. We formulate our design to minimize the dimensionality of scores while satisfying the objectives. We give algorithms to design scores, which are provably minimal under mild assumptions on the structure of performance metrics. This framework draws motivation from real-world practices in hospital rating systems, where misaligned scores and performance metrics lead to unintended consequences.
Abstract:We consider the overfitting behavior of minimum norm interpolating solutions of Gaussian kernel ridge regression (i.e. kernel ridgeless regression), when the bandwidth or input dimension varies with the sample size. For fixed dimensions, we show that even with varying or tuned bandwidth, the ridgeless solution is never consistent and, at least with large enough noise, always worse than the null predictor. For increasing dimension, we give a generic characterization of the overfitting behavior for any scaling of the dimension with sample size. We use this to provide the first example of benign overfitting using the Gaussian kernel with sub-polynomial scaling dimension. All our results are under the Gaussian universality ansatz and the (non-rigorous) risk predictions in terms of the kernel eigenstructure.
Abstract:The goal of this paper is to investigate the complexity of gradient algorithms when learning sparse functions (juntas). We introduce a type of Statistical Queries ($\mathsf{SQ}$), which we call Differentiable Learning Queries ($\mathsf{DLQ}$), to model gradient queries on a specified loss with respect to an arbitrary model. We provide a tight characterization of the query complexity of $\mathsf{DLQ}$ for learning the support of a sparse function over generic product distributions. This complexity crucially depends on the loss function. For the squared loss, $\mathsf{DLQ}$ matches the complexity of Correlation Statistical Queries $(\mathsf{CSQ})$--potentially much worse than $\mathsf{SQ}$. But for other simple loss functions, including the $\ell_1$ loss, $\mathsf{DLQ}$ always achieves the same complexity as $\mathsf{SQ}$. We also provide evidence that $\mathsf{DLQ}$ can indeed capture learning with (stochastic) gradient descent by showing it correctly describes the complexity of learning with a two-layer neural network in the mean field regime and linear scaling.
Abstract:We study the implicit bias of optimization in robust empirical risk minimization (robust ERM) and its connection with robust generalization. In classification settings under adversarial perturbations with linear models, we study what type of regularization should ideally be applied for a given perturbation set to improve (robust) generalization. We then show that the implicit bias of optimization in robust ERM can significantly affect the robustness of the model and identify two ways this can happen; either through the optimization algorithm or the architecture. We verify our predictions in simulations with synthetic data and experimentally study the importance of implicit bias in robust ERM with deep neural networks.