Abstract:Optical coherence tomography (OCT) image analysis plays an important role in the field of ophthalmology. Current successful analysis models rely on available large datasets, which can be challenging to be obtained for certain tasks. The use of deep generative models to create realistic data emerges as a promising approach. However, due to limitations in hardware resources, it is still difficulty to synthesize high-resolution OCT volumes. In this paper, we introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way. First, we propose non-holistic autoencoders to efficiently build a bidirectional mapping between high-resolution volume space and low-resolution latent space. In tandem with autoencoders, we propose cascaded diffusion processes to synthesize high-resolution OCT volumes with a global-to-local refinement process, amortizing the memory and computational demands. Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods. Moreover, performance gains on two down-stream fine-grained segmentation tasks demonstrate the benefit of the proposed method in training deep learning models for medical imaging tasks. The code is public available at: https://github.com/nicetomeetu21/CA-LDM.
Abstract:Myopia is a manifestation of visual impairment caused by an excessively elongated eyeball. Image data is critical material for studying high myopia and pathological myopia. Measurements of spherical equivalent and axial length are the gold standards for identifying high myopia, but the available image data for matching them is scarce. In addition, the criteria for defining high myopia vary from study to study, and therefore the inclusion of samples in automated screening efforts requires an appropriate assessment of interpretability. In this work, we propose a model called adjustable robust transformer (ARTran) for high myopia screening of optical coherence tomography (OCT) data. Based on vision transformer, we propose anisotropic patch embedding (APE) to capture more discriminative features of high myopia. To make the model effective under variable screening conditions, we propose an adjustable class embedding (ACE) to replace the fixed class token, which changes the output to adapt to different conditions. Considering the confusion of the data at high myopia and low myopia threshold, we introduce the label noise learning strategy and propose a shifted subspace transition matrix (SST) to enhance the robustness of the model. Besides, combining the two structures proposed above, the model can provide evidence for uncertainty evaluation. The experimental results demonstrate the effectiveness and reliability of the proposed method. Code is available at: https://github.com/maxiao0234/ARTran.