Abstract:The rapid advancement of Extended Reality (XR, encompassing AR, MR, and VR) and spatial computing technologies forms a foundational layer for the emerging Metaverse, enabling innovative applications across healthcare, education, manufacturing, and entertainment. However, research in this area is often limited by the lack of large, representative, and highquality application datasets that can support empirical studies and the development of new approaches benefiting XR software processes. In this paper, we introduce XRZoo, a comprehensive and curated dataset of XR applications designed to bridge this gap. XRZoo contains 12,528 free XR applications, spanning nine app stores, across all XR techniques (i.e., AR, MR, and VR) and use cases, with detailed metadata on key aspects such as application descriptions, application categories, release dates, user review numbers, and hardware specifications, etc. By making XRZoo publicly available, we aim to foster reproducible XR software engineering and security research, enable cross-disciplinary investigations, and also support the development of advanced XR systems by providing examples to developers. Our dataset serves as a valuable resource for researchers and practitioners interested in improving the scalability, usability, and effectiveness of XR applications. XRZoo will be released and actively maintained.
Abstract:Current fundus image analysis models are predominantly built for specific tasks relying on individual datasets. The learning process is usually based on data-driven paradigm without prior knowledge, resulting in poor transferability and generalizability. To address this issue, we propose MM-Retinal, a multi-modal dataset that encompasses high-quality image-text pairs collected from professional fundus diagram books. Moreover, enabled by MM-Retinal, we present a novel Knowledge-enhanced foundational pretraining model which incorporates Fundus Image-Text expertise, called KeepFIT. It is designed with image similarity-guided text revision and mixed training strategy to infuse expert knowledge. Our proposed fundus foundation model achieves state-of-the-art performance across six unseen downstream tasks and holds excellent generalization ability in zero-shot and few-shot scenarios. MM-Retinal and KeepFIT are available at https://github.com/lxirich/MM-Retinal.