Abstract:Background and purpose: Deformable image registration (DIR) is a crucial tool in radiotherapy for extracting and modelling organ motion. However, when significant changes and sliding boundaries are present, it faces compromised accuracy and uncertainty, determining the subsequential contour propagation and dose accumulation procedures. Materials and methods: We propose an implicit neural representation (INR)-based approach modelling motion continuously in both space and time, named Continues-sPatial-Temporal DIR (CPT-DIR). This method uses a multilayer perception (MLP) network to map 3D coordinate (x,y,z) to its corresponding velocity vector (vx,vy,vz). The displacement vectors (dx,dy,dz) are then calculated by integrating velocity vectors over time. The MLP's parameters can rapidly adapt to new cases without pre-training, enhancing optimisation. The DIR's performance was tested on the DIR-Lab dataset of 10 lung 4DCT cases, using metrics of landmark accuracy (TRE), contour conformity (Dice) and image similarity (MAE). Results: The proposed CPT-DIR can reduce landmark TRE from 2.79mm to 0.99mm, outperforming B-splines' results for all cases. The MAE of the whole-body region improves from 35.46HU to 28.99HU. Furthermore, CPT-DIR surpasses B-splines for accuracy in the sliding boundary region, lowering MAE and increasing Dice coefficients for the ribcage from 65.65HU and 90.41% to 42.04HU and 90.56%, versus 75.40HU and 89.30% without registration. Meanwhile, CPT-DIR offers significant speed advantages, completing in under 15 seconds compared to a few minutes with the conventional B-splines method. Conclusion: Leveraging the continuous representations, the CPT-DIR method significantly enhances registration accuracy, automation and speed, outperforming traditional B-splines in landmark and contour precision, particularly in the challenging areas.
Abstract:In recent advancements in proton therapy, MR-based treatment planning is gaining momentum to minimize additional radiation exposure compared to traditional CT-based methods. This transition highlights the critical need for accurate MR-to-CT image synthesis, which is essential for precise proton dose calculations. Our research introduces the Diffusion Schr\"odinger Bridge Models (DSBM), an innovative approach for high-quality MR-to-CT synthesis. DSBM learns the nonlinear diffusion processes between MR and CT data distributions. This method improves upon traditional diffusion models by initiating synthesis from the prior distribution rather than the Gaussian distribution, enhancing both generation quality and efficiency. We validated the effectiveness of DSBM on a head and neck cancer dataset, demonstrating its superiority over traditional image synthesis methods through both image-level and dosimetric-level evaluations. The effectiveness of DSBM in MR-based proton treatment planning highlights its potential as a valuable tool in various clinical scenarios.
Abstract:Scale arbitrary super-resolution based on implicit image function gains increasing popularity since it can better represent the visual world in a continuous manner. However, existing scale arbitrary works are trained and evaluated on simulated datasets, where low-resolution images are generated from their ground truths by the simplest bicubic downsampling. These models exhibit limited generalization to real-world scenarios due to the greater complexity of real-world degradations. To address this issue, we build a RealArbiSR dataset, a new real-world super-resolution benchmark with both integer and non-integer scaling factors for the training and evaluation of real-world scale arbitrary super-resolution. Moreover, we propose a Dual-level Deformable Implicit Representation (DDIR) to solve real-world scale arbitrary super-resolution. Specifically, we design the appearance embedding and deformation field to handle both image-level and pixel-level deformations caused by real-world degradations. The appearance embedding models the characteristics of low-resolution inputs to deal with photometric variations at different scales, and the pixel-based deformation field learns RGB differences which result from the deviations between the real-world and simulated degradations at arbitrary coordinates. Extensive experiments show our trained model achieves state-of-the-art performance on the RealArbiSR and RealSR benchmarks for real-world scale arbitrary super-resolution. Our dataset as well as source code will be publicly available.
Abstract:Intra-fraction motion in radiotherapy is commonly modeled using deformable image registration (DIR). However, existing methods often struggle to balance speed and accuracy, limiting their applicability in clinical scenarios. This study introduces a novel approach that harnesses Neural Graphics Primitives (NGP) to optimize the displacement vector field (DVF). Our method leverages learned primitives, processed as splats, and interpolates within space using a shallow neural network. Uniquely, it enables self-supervised optimization at an ultra-fast speed, negating the need for pre-training on extensive datasets and allowing seamless adaptation to new cases. We validated this approach on the 4D-CT lung dataset DIR-lab, achieving a target registration error (TRE) of 1.15\pm1.15 mm within a remarkable time of 1.77 seconds. Notably, our method also addresses the sliding boundary problem, a common challenge in conventional DIR methods.
Abstract:In this paper, we propose Skip-Plan, a condensed action space learning method for procedure planning in instructional videos. Current procedure planning methods all stick to the state-action pair prediction at every timestep and generate actions adjacently. Although it coincides with human intuition, such a methodology consistently struggles with high-dimensional state supervision and error accumulation on action sequences. In this work, we abstract the procedure planning problem as a mathematical chain model. By skipping uncertain nodes and edges in action chains, we transfer long and complex sequence functions into short but reliable ones in two ways. First, we skip all the intermediate state supervision and only focus on action predictions. Second, we decompose relatively long chains into multiple short sub-chains by skipping unreliable intermediate actions. By this means, our model explores all sorts of reliable sub-relations within an action sequence in the condensed action space. Extensive experiments show Skip-Plan achieves state-of-the-art performance on the CrossTask and COIN benchmarks for procedure planning.
Abstract:With the rising industrial attention to 3D virtual modeling technology, generating novel 3D content based on specified conditions (e.g. text) has become a hot issue. In this paper, we propose a new generative 3D modeling framework called Diffusion-SDF for the challenging task of text-to-shape synthesis. Previous approaches lack flexibility in both 3D data representation and shape generation, thereby failing to generate highly diversified 3D shapes conforming to the given text descriptions. To address this, we propose a SDF autoencoder together with the Voxelized Diffusion model to learn and generate representations for voxelized signed distance fields (SDFs) of 3D shapes. Specifically, we design a novel UinU-Net architecture that implants a local-focused inner network inside the standard U-Net architecture, which enables better reconstruction of patch-independent SDF representations. We extend our approach to further text-to-shape tasks including text-conditioned shape completion and manipulation. Experimental results show that Diffusion-SDF is capable of generating both high-quality and highly diversified 3D shapes that conform well to the given text descriptions. Diffusion-SDF has demonstrated its superiority compared to previous state-of-the-art text-to-shape approaches.
Abstract:Action recognition models have shown a promising capability to classify human actions in short video clips. In a real scenario, multiple correlated human actions commonly occur in particular orders, forming semantically meaningful human activities. Conventional action recognition approaches focus on analyzing single actions. However, they fail to fully reason about the contextual relations between adjacent actions, which provide potential temporal logic for understanding long videos. In this paper, we propose a prompt-based framework, Bridge-Prompt (Br-Prompt), to model the semantics across adjacent actions, so that it simultaneously exploits both out-of-context and contextual information from a series of ordinal actions in instructional videos. More specifically, we reformulate the individual action labels as integrated text prompts for supervision, which bridge the gap between individual action semantics. The generated text prompts are paired with corresponding video clips, and together co-train the text encoder and the video encoder via a contrastive approach. The learned vision encoder has a stronger capability for ordinal-action-related downstream tasks, e.g. action segmentation and human activity recognition. We evaluate the performances of our approach on several video datasets: Georgia Tech Egocentric Activities (GTEA), 50Salads, and the Breakfast dataset. Br-Prompt achieves state-of-the-art on multiple benchmarks. Code is available at https://github.com/ttlmh/Bridge-Prompt