Abstract:Deformable image registration (DIR) is a fundamental task in radiotherapy, with existing methods often struggling to balance computational efficiency, registration accuracy, and speed effectively. We introduce a novel DIR approach employing parametric 3D Gaussian control points achieving a better tradeoff. It provides an explicit and flexible representation for spatial deformation fields between 3D volumetric medical images, producing a displacement vector field (DVF) across all volumetric positions. The movement of individual voxels is derived using linear blend skinning (LBS) through localized interpolation of transformations associated with neighboring Gaussians. This interpolation strategy not only simplifies the determination of voxel motions but also acts as an effective regularization technique. Our approach incorporates a unified optimization process through backpropagation, enabling iterative learning of both the parameters of the 3D Gaussians and their transformations. Additionally, the density of Gaussians is adjusted adaptively during the learning phase to accommodate varying degrees of motion complexity. We validated our approach on the 4D-CT lung DIR-Lab and cardiac ACDC datasets, achieving an average target registration error (TRE) of 1.06 mm within a much-improved processing time of 2.43 seconds for the DIR-Lab dataset over existing methods, demonstrating significant advancements in both accuracy and efficiency.
Abstract:The limited robustness of 3D Gaussian Splatting (3DGS) to motion blur and camera noise, along with its poor real-time performance, restricts its application in robotic SLAM tasks. Upon analysis, the primary causes of these issues are the density of views with motion blur and the cumulative errors in dense pose estimation from calculating losses based on noisy original images and rendering results, which increase the difficulty of 3DGS rendering convergence. Thus, a cutting-edge 3DGS-based SLAM system is introduced, leveraging the efficiency and flexibility of 3DGS to achieve real-time performance while remaining robust against sensor noise, motion blur, and the challenges posed by long-session SLAM. Central to this approach is the Fusion Bridge module, which seamlessly integrates tracking-centered ORB Visual Odometry with mapping-centered online 3DGS. Precise pose initialization is enabled by this module through joint optimization of re-projection and rendering loss, as well as strategic view selection, enhancing rendering convergence in large-scale scenes. Extensive experiments demonstrate state-of-the-art rendering quality and localization accuracy, positioning this system as a promising solution for real-world robotics applications that require stable, near-real-time performance. Our project is available at https://ZeldaFromHeaven.github.io/TAMBRIDGE/
Abstract:Intra-fraction motion in radiotherapy is commonly modeled using deformable image registration (DIR). However, existing methods often struggle to balance speed and accuracy, limiting their applicability in clinical scenarios. This study introduces a novel approach that harnesses Neural Graphics Primitives (NGP) to optimize the displacement vector field (DVF). Our method leverages learned primitives, processed as splats, and interpolates within space using a shallow neural network. Uniquely, it enables self-supervised optimization at an ultra-fast speed, negating the need for pre-training on extensive datasets and allowing seamless adaptation to new cases. We validated this approach on the 4D-CT lung dataset DIR-lab, achieving a target registration error (TRE) of 1.15\pm1.15 mm within a remarkable time of 1.77 seconds. Notably, our method also addresses the sliding boundary problem, a common challenge in conventional DIR methods.