Abstract:3D Gaussian Splatting has demonstrated notable success in large-scale scene reconstruction, but challenges persist due to high training memory consumption and storage overhead. Hybrid representations that integrate implicit and explicit features offer a way to mitigate these limitations. However, when applied in parallelized block-wise training, two critical issues arise since reconstruction accuracy deteriorates due to reduced data diversity when training each block independently, and parallel training restricts the number of divided blocks to the available number of GPUs. To address these issues, we propose Momentum-GS, a novel approach that leverages momentum-based self-distillation to promote consistency and accuracy across the blocks while decoupling the number of blocks from the physical GPU count. Our method maintains a teacher Gaussian decoder updated with momentum, ensuring a stable reference during training. This teacher provides each block with global guidance in a self-distillation manner, promoting spatial consistency in reconstruction. To further ensure consistency across the blocks, we incorporate block weighting, dynamically adjusting each block's weight according to its reconstruction accuracy. Extensive experiments on large-scale scenes show that our method consistently outperforms existing techniques, achieving a 12.8% improvement in LPIPS over CityGaussian with much fewer divided blocks and establishing a new state of the art. Project page: https://jixuan-fan.github.io/Momentum-GS_Page/
Abstract:Scale arbitrary super-resolution based on implicit image function gains increasing popularity since it can better represent the visual world in a continuous manner. However, existing scale arbitrary works are trained and evaluated on simulated datasets, where low-resolution images are generated from their ground truths by the simplest bicubic downsampling. These models exhibit limited generalization to real-world scenarios due to the greater complexity of real-world degradations. To address this issue, we build a RealArbiSR dataset, a new real-world super-resolution benchmark with both integer and non-integer scaling factors for the training and evaluation of real-world scale arbitrary super-resolution. Moreover, we propose a Dual-level Deformable Implicit Representation (DDIR) to solve real-world scale arbitrary super-resolution. Specifically, we design the appearance embedding and deformation field to handle both image-level and pixel-level deformations caused by real-world degradations. The appearance embedding models the characteristics of low-resolution inputs to deal with photometric variations at different scales, and the pixel-based deformation field learns RGB differences which result from the deviations between the real-world and simulated degradations at arbitrary coordinates. Extensive experiments show our trained model achieves state-of-the-art performance on the RealArbiSR and RealSR benchmarks for real-world scale arbitrary super-resolution. Our dataset as well as source code will be publicly available.