Abstract:AI holds promise for transforming scientific processes, including hypothesis generation. Prior work on hypothesis generation can be broadly categorized into theory-driven and data-driven approaches. While both have proven effective in generating novel and plausible hypotheses, it remains an open question whether they can complement each other. To address this, we develop the first method that combines literature-based insights with data to perform LLM-powered hypothesis generation. We apply our method on five different datasets and demonstrate that integrating literature and data outperforms other baselines (8.97\% over few-shot, 15.75\% over literature-based alone, and 3.37\% over data-driven alone). Additionally, we conduct the first human evaluation to assess the utility of LLM-generated hypotheses in assisting human decision-making on two challenging tasks: deception detection and AI generated content detection. Our results show that human accuracy improves significantly by 7.44\% and 14.19\% on these tasks, respectively. These findings suggest that integrating literature-based and data-driven approaches provides a comprehensive and nuanced framework for hypothesis generation and could open new avenues for scientific inquiry.
Abstract:Facial recognition using deep learning has been widely used in social life for applications such as authentication, smart door locks, and photo grouping, etc. More and more networks have been developed to facilitate computer vision tasks, such as ResNet, DenseNet, EfficientNet, ConvNeXt, and Siamese networks. However, few studies have systematically compared the advantages and disadvantages of such neural networks in identifying individuals from images, especially for pet animals like cats. In the present study, by systematically comparing the efficacy of different neural networks in cat recognition, we found traditional CNNs trained with transfer learning have better performance than models trained with the fine-tuning method or Siamese networks in individual cat recognition. In addition, ConvNeXt and DenseNet yield significant results which could be further optimized for individual cat recognition in pet stores and in the wild. These results provide a method to improve cat management in pet stores and monitoring of cats in the wild.
Abstract:Humans can steadily and gently grasp unfamiliar objects based on tactile perception. Robots still face challenges in achieving similar performance due to the difficulty of learning accurate grasp-force predictions and force control strategies that can be generalized from limited data. In this article, we propose an approach for learning grasping from ideal force control demonstrations, to achieve similar performance of human hands with limited data size. Our approach utilizes objects with known contact characteristics to automatically generate reference force curves without human demonstrations. In addition, we design the dual convolutional neural networks (Dual-CNN) architecture which incorporating a physics-based mechanics module for learning target grasping force predictions from demonstrations. The described method can be effectively applied in vision-based tactile sensors and enables gentle and stable grasping of objects from the ground. The described prediction model and grasping strategy were validated in offline evaluations and online experiments, and the accuracy and generalizability were demonstrated.
Abstract:The inspection of power transmission line has achieved notable achievements in the past few years, primarily due to the integration of deep learning technology. However, current inspection approaches continue to encounter difficulties in generalization and intelligence, which restricts their further applicability. In this paper, we introduce Power-LLaVA, the first large language and vision assistant designed to offer professional and reliable inspection services for power transmission line by engaging in dialogues with humans. Moreover, we also construct a large-scale and high-quality dataset specialized for the inspection task. By employing a two-stage training strategy on the constructed dataset, Power-LLaVA demonstrates exceptional performance at a comparatively low training cost. Extensive experiments further prove the great capabilities of Power-LLaVA within the realm of power transmission line inspection. Code shall be released.
Abstract:For elastomer-based tactile sensors, represented by visuotactile sensors, routine calibration of mechanical parameters (Young's modulus and Poisson's ratio) has been shown to be important for force reconstruction. However, the reliance on existing in-situ calibration methods for accurate force measurements limits their cost-effective and flexible applications. This article proposes a new in-situ calibration scheme that relies only on comparing contact deformation. Based on the detailed derivations of the normal contact and torsional contact theories, we designed a simple and low-cost calibration device, EasyCalib, and validated its effectiveness through extensive finite element analysis. We also explored the accuracy of EasyCalib in the practical application and demonstrated that accurate contact distributed force reconstruction can be realized based on the mechanical parameters obtained. EasyCalib balances low hardware cost, ease of operation, and low dependence on technical expertise and is expected to provide the necessary accuracy guarantees for wide applications of visuotactile sensors in the wild.
Abstract:Large language models (LLMs) with Transformer architectures have become phenomenal in natural language processing, multimodal generative artificial intelligence, and agent-oriented artificial intelligence. The self-attention module is the most dominating sub-structure inside Transformer-based LLMs. Computation using general-purpose graphics processing units (GPUs) inflicts reckless demand for I/O bandwidth for transferring intermediate calculation results between memories and processing units. To tackle this challenge, this work develops a fully customized vanilla self-attention accelerator, AttentionLego, as the basic building block for constructing spatially expandable LLM processors. AttentionLego provides basic implementation with fully-customized digital logic incorporating Processing-In-Memory (PIM) technology. It is based on PIM-based matrix-vector multiplication and look-up table-based Softmax design. The open-source code is available online: https://bonany.cc/attentionleg.
Abstract:Nanophotonic structures have versatile applications including solar cells, anti-reflective coatings, electromagnetic interference shielding, optical filters, and light emitting diodes. To design and understand these nanophotonic structures, electrodynamic simulations are essential. These simulations enable us to model electromagnetic fields over time and calculate optical properties. In this work, we introduce frameworks and benchmarks to evaluate nanophotonic structures in the context of parametric structure design problems. The benchmarks are instrumental in assessing the performance of optimization algorithms and identifying an optimal structure based on target optical properties. Moreover, we explore the impact of varying grid sizes in electrodynamic simulations, shedding light on how evaluation fidelity can be strategically leveraged in enhancing structure designs.
Abstract:In typical in-hand manipulation tasks represented by object pivoting, the real-time perception of rotational slippage has been proven beneficial for improving the dexterity and stability of robotic hands. An effective strategy is to obtain the contact properties for measuring rotation angle through visuotactile sensing. However, existing methods for rotation estimation did not consider the impact of the incipient slip during the pivoting process, which introduces measurement errors and makes it hard to determine the boundary between stable contact and macro slip. This paper describes a generalized 2-d contact model under pivoting, and proposes a rotation measurement method based on the line-features in the stick region. The proposed method was applied to the Tac3D vision-based tactile sensors using continuous marker patterns. Experiments show that the rotation measurement system could achieve an average static measurement error of 0.17 degree and an average dynamic measurement error of 1.34 degree. Besides, the proposed method requires no training data and can achieve real-time sensing during the in-hand object pivoting.
Abstract:Visuotactile sensing technology has received much attention in recent years. This article proposes a feature detection method applicable to visuotactile sensors based on continuous marker patterns (CMP) to measure 3-d deformation. First, we construct the feature model of checkerboard-like corners under contact deformation, and design a novel double-layer circular sampler. Then, we propose the judging criteria and response function of corner features by analyzing sampling signals' amplitude-frequency characteristics and circular cross-correlation behavior. The proposed feature detection algorithm fully considers the boundary characteristics retained by the corners with geometric distortion, thus enabling reliable detection at a low calculation cost. The experimental results show that the proposed method has significant advantages in terms of real-time and robustness. Finally, we have achieved the high-density 3-d contact deformation visualization based on this detection method. This technique is able to clearly record the process of contact deformation, thus enabling inverse sensing of dynamic contact processes.
Abstract:While having achieved great success in rich real-life applications, deep neural network (DNN) models have long been criticized for their vulnerability to adversarial attacks. Tremendous research efforts have been dedicated to mitigating the threats of adversarial attacks, but the essential trait of adversarial examples is not yet clear, and most existing methods are yet vulnerable to hybrid attacks and suffer from counterattacks. In light of this, in this paper, we first reveal a gradient-based correlation between sensitivity analysis-based DNN interpreters and the generation process of adversarial examples, which indicates the Achilles's heel of adversarial attacks and sheds light on linking together the two long-standing challenges of DNN: fragility and unexplainability. We then propose an interpreter-based ensemble framework called X-Ensemble for robust adversary defense. X-Ensemble adopts a novel detection-rectification process and features in building multiple sub-detectors and a rectifier upon various types of interpretation information toward target classifiers. Moreover, X-Ensemble employs the Random Forests (RF) model to combine sub-detectors into an ensemble detector for adversarial hybrid attacks defense. The non-differentiable property of RF further makes it a precious choice against the counterattack of adversaries. Extensive experiments under various types of state-of-the-art attacks and diverse attack scenarios demonstrate the advantages of X-Ensemble to competitive baseline methods.