Abstract:The evaluation of vision-language models (VLMs) has mainly relied on English-language benchmarks, leaving significant gaps in both multilingual and multicultural coverage. While multilingual benchmarks have expanded, both in size and languages, many rely on translations of English datasets, failing to capture cultural nuances. In this work, we propose Kaleidoscope, as the most comprehensive exam benchmark to date for the multilingual evaluation of vision-language models. Kaleidoscope is a large-scale, in-language multimodal benchmark designed to evaluate VLMs across diverse languages and visual inputs. Kaleidoscope covers 18 languages and 14 different subjects, amounting to a total of 20,911 multiple-choice questions. Built through an open science collaboration with a diverse group of researchers worldwide, Kaleidoscope ensures linguistic and cultural authenticity. We evaluate top-performing multilingual vision-language models and find that they perform poorly on low-resource languages and in complex multimodal scenarios. Our results highlight the need for progress on culturally inclusive multimodal evaluation frameworks.
Abstract:Large Language Models (LLMs) have seen widespread societal adoption. However, while they are able to interact with users in languages beyond English, they have been shown to lack cultural awareness, providing anglocentric or inappropriate responses for underrepresented language communities. To investigate this gap and disentangle linguistic versus cultural proficiency, we conduct the first cultural evaluation study for the mid-resource language of Danish, in which native speakers prompt different models to solve tasks requiring cultural awareness. Our analysis of the resulting 1,038 interactions from 63 demographically diverse participants highlights open challenges to cultural adaptation: Particularly, how currently employed automatically translated data are insufficient to train or measure cultural adaptation, and how training on native-speaker data can more than double response acceptance rates. We release our study data as DaKultur - the first native Danish cultural awareness dataset.
Abstract:Hackathons have become popular collaborative events for accelerating the development of creative ideas and prototypes. There are several case studies showcasing creative outcomes across domains such as industry, education, and research. However, there are no large-scale studies on creativity in hackathons which can advance theory on how hackathon formats lead to creative outcomes. We conducted a computational analysis of 193,353 hackathon projects. By operationalizing creativity through usefulness and novelty, we refined our dataset to 10,363 projects, allowing us to analyze how participant characteristics, collaboration patterns, and hackathon setups influence the development of creative projects. The contribution of our paper is twofold: We identified means for organizers to foster creativity in hackathons. We also explore the use of large language models (LLMs) to augment the evaluation of creative outcomes and discuss challenges and opportunities of doing this, which has implications for creativity research at large.
Abstract:The U.S. Securities and Exchange Commission (SEC) requires that public companies file financial reports tagging numbers with the machine readable inline eXtensible Business Reporting Language (iXBRL) standard. However, the highly complex and highly granular taxonomy defined by iXBRL limits label transferability across domains. In this paper, we introduce the Hierarchical Financial Key Performance Indicator (HiFi-KPI) dataset, designed to facilitate numerical KPI extraction at specified levels of granularity from unstructured financial text. Our approach organizes a 218,126-label hierarchy using a taxonomy based grouping method, investigating which taxonomy layer provides the most meaningful structure. HiFi-KPI comprises ~1.8M paragraphs and ~5M entities, each linked to a label in the iXBRL-specific calculation and presentation taxonomies. We provide baselines using encoder-based approaches and structured extraction using Large Language Models (LLMs). To simplify LLM inference and evaluation, we additionally release HiFi-KPI Lite, a manually curated subset with four expert-mapped labels. We publicly release all artifacts
Abstract:Providing high-quality feedback is crucial for student success but is constrained by time, cost, and limited data availability. We introduce Synthetic Educational Feedback Loops (SEFL), a novel framework designed to deliver immediate, on-demand feedback at scale without relying on extensive, real-world student data. In SEFL, two large language models (LLMs) operate in teacher--student roles to simulate assignment completion and formative feedback, generating abundant synthetic pairs of student work and corresponding critiques. We then fine-tune smaller, more computationally efficient LLMs on these synthetic pairs, enabling them to replicate key features of high-quality, goal-oriented feedback. Unlike personalized tutoring approaches that offer multi-turn, individualized instruction, SEFL specifically focuses on replicating the teacher-->student feedback loop for diverse assignments. Through both LLM-as-a-judge and human evaluations, we demonstrate that SEFL-tuned models outperform their non-tuned counterparts in feedback quality, clarity, and timeliness. These findings reveal SEFL's potential to transform feedback processes for higher education and beyond, offering an ethical and scalable alternative to conventional manual feedback cycles.
Abstract:This paper investigates whether Large Language Models (LLMs), fine-tuned on synthetic but domain-representative data, can perform the twofold task of (i) slot and intent detection and (ii) natural language response generation for a smart home assistant, while running solely on resource-limited, CPU-only edge hardware. We fine-tune LLMs to produce both JSON action calls and text responses. Our experiments show that 16-bit and 8-bit quantized variants preserve high accuracy on slot and intent detection and maintain strong semantic coherence in generated text, while the 4-bit model, while retaining generative fluency, suffers a noticeable drop in device-service classification accuracy. Further evaluations on noisy human (non-synthetic) prompts and out-of-domain intents confirm the models' generalization ability, obtaining around 80--86\% accuracy. While the average inference time is 5--6 seconds per query -- acceptable for one-shot commands but suboptimal for multi-turn dialogue -- our results affirm that an on-device LLM can effectively unify command interpretation and flexible response generation for home automation without relying on specialized hardware.
Abstract:Sailor2 is a family of cutting-edge multilingual language models for South-East Asian (SEA) languages, available in 1B, 8B, and 20B sizes to suit diverse applications. Building on Qwen2.5, Sailor2 undergoes continuous pre-training on 500B tokens (400B SEA-specific and 100B replay tokens) to support 13 SEA languages while retaining proficiency in Chinese and English. Sailor2-20B model achieves a 50-50 win rate against GPT-4o across SEA languages. We also deliver a comprehensive cookbook on how to develop the multilingual model in an efficient manner, including five key aspects: data curation, pre-training, post-training, model customization and evaluation. We hope that Sailor2 model (Apache 2.0 license) will drive language development in the SEA region, and Sailor2 cookbook will inspire researchers to build more inclusive LLMs for other under-served languages.
Abstract:We present SnakModel, a Danish large language model (LLM) based on Llama2-7B, which we continuously pre-train on 13.6B Danish words, and further tune on 3.7M Danish instructions. As best practices for creating LLMs for smaller language communities have yet to be established, we examine the effects of early modeling and training decisions on downstream performance throughout the entire training pipeline, including (1) the creation of a strictly curated corpus of Danish text from diverse sources; (2) the language modeling and instruction-tuning training process itself, including the analysis of intermediate training dynamics, and ablations across different hyperparameters; (3) an evaluation on eight language and culturally-specific tasks. Across these experiments SnakModel achieves the highest overall performance, outperforming multiple contemporary Llama2-7B-based models. By making SnakModel, the majority of our pre-training corpus, and the associated code available under open licenses, we hope to foster further research and development in Danish Natural Language Processing, and establish training guidelines for languages with similar resource constraints.
Abstract:The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (\ie, multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. Our novel resource, INCLUDE, is a comprehensive knowledge- and reasoning-centric benchmark across 44 written languages that evaluates multilingual LLMs for performance in the actual language environments where they would be deployed.
Abstract:Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.