Abstract:We present SnakModel, a Danish large language model (LLM) based on Llama2-7B, which we continuously pre-train on 13.6B Danish words, and further tune on 3.7M Danish instructions. As best practices for creating LLMs for smaller language communities have yet to be established, we examine the effects of early modeling and training decisions on downstream performance throughout the entire training pipeline, including (1) the creation of a strictly curated corpus of Danish text from diverse sources; (2) the language modeling and instruction-tuning training process itself, including the analysis of intermediate training dynamics, and ablations across different hyperparameters; (3) an evaluation on eight language and culturally-specific tasks. Across these experiments SnakModel achieves the highest overall performance, outperforming multiple contemporary Llama2-7B-based models. By making SnakModel, the majority of our pre-training corpus, and the associated code available under open licenses, we hope to foster further research and development in Danish Natural Language Processing, and establish training guidelines for languages with similar resource constraints.
Abstract:The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (\ie, multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. Our novel resource, INCLUDE, is a comprehensive knowledge- and reasoning-centric benchmark across 44 written languages that evaluates multilingual LLMs for performance in the actual language environments where they would be deployed.
Abstract:Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
Abstract:Using doors is a longstanding challenge in robotics and is of significant practical interest in giving robots greater access to human-centric spaces. The task is challenging due to the need for online adaptation to varying door properties and precise control in manipulating the door panel and navigating through the confined doorway. To address this, we propose a learning-based controller for a legged manipulator to open and traverse through doors. The controller is trained using a teacher-student approach in simulation to learn robust task behaviors as well as estimate crucial door properties during the interaction. Unlike previous works, our approach is a single control policy that can handle both push and pull doors through learned behaviour which infers the opening direction during deployment without prior knowledge. The policy was deployed on the ANYmal legged robot with an arm and achieved a success rate of 95.0% in repeated trials conducted in an experimental setting. Additional experiments validate the policy's effectiveness and robustness to various doors and disturbances. A video overview of the method and experiments can be found at youtu.be/tQDZXN_k5NU.
Abstract:[Abridged Abstract] Recent technological advances underscore labor market dynamics, yielding significant consequences for employment prospects and increasing job vacancy data across platforms and languages. Aggregating such data holds potential for valuable insights into labor market demands, new skills emergence, and facilitating job matching for various stakeholders. However, despite prevalent insights in the private sector, transparent language technology systems and data for this domain are lacking. This thesis investigates Natural Language Processing (NLP) technology for extracting relevant information from job descriptions, identifying challenges including scarcity of training data, lack of standardized annotation guidelines, and shortage of effective extraction methods from job ads. We frame the problem, obtaining annotated data, and introducing extraction methodologies. Our contributions include job description datasets, a de-identification dataset, and a novel active learning algorithm for efficient model training. We propose skill extraction using weak supervision, a taxonomy-aware pre-training methodology adapting multilingual language models to the job market domain, and a retrieval-augmented model leveraging multiple skill extraction datasets to enhance overall performance. Finally, we ground extracted information within a designated taxonomy.
Abstract:Textual domain is a crucial property within the Natural Language Processing (NLP) community due to its effects on downstream model performance. The concept itself is, however, loosely defined and, in practice, refers to any non-typological property, such as genre, topic, medium or style of a document. We investigate the core notion of domains via human proficiency in identifying related intrinsic textual properties, specifically the concepts of genre (communicative purpose) and topic (subject matter). We publish our annotations in *TGeGUM*: A collection of 9.1k sentences from the GUM dataset (Zeldes, 2017) with single sentence and larger context (i.e., prose) annotations for one of 11 genres (source type), and its topic/subtopic as per the Dewey Decimal library classification system (Dewey, 1979), consisting of 10/100 hierarchical topics of increased granularity. Each instance is annotated by three annotators, for a total of 32.7k annotations, allowing us to examine the level of human disagreement and the relative difficulty of each annotation task. With a Fleiss' kappa of at most 0.53 on the sentence level and 0.66 at the prose level, it is evident that despite the ubiquity of domains in NLP, there is little human consensus on how to define them. By training classifiers to perform the same task, we find that this uncertainty also extends to NLP models.
Abstract:Datasets are foundational to many breakthroughs in modern artificial intelligence. Many recent achievements in the space of natural language processing (NLP) can be attributed to the finetuning of pre-trained models on a diverse set of tasks that enables a large language model (LLM) to respond to instructions. Instruction fine-tuning (IFT) requires specifically constructed and annotated datasets. However, existing datasets are almost all in the English language. In this work, our primary goal is to bridge the language gap by building a human-curated instruction-following dataset spanning 65 languages. We worked with fluent speakers of languages from around the world to collect natural instances of instructions and completions. Furthermore, we create the most extensive multilingual collection to date, comprising 513 million instances through templating and translating existing datasets across 114 languages. In total, we contribute four key resources: we develop and open-source the Aya Annotation Platform, the Aya Dataset, the Aya Collection, and the Aya Evaluation Suite. The Aya initiative also serves as a valuable case study in participatory research, involving collaborators from 119 countries. We see this as a valuable framework for future research collaborations that aim to bridge gaps in resources.
Abstract:Recent years have brought significant advances to Natural Language Processing (NLP), which enabled fast progress in the field of computational job market analysis. Core tasks in this application domain are skill extraction and classification from job postings. Because of its quick growth and its interdisciplinary nature, there is no exhaustive assessment of this emerging field. This survey aims to fill this gap by providing a comprehensive overview of deep learning methodologies, datasets, and terminologies specific to NLP-driven skill extraction and classification. Our comprehensive cataloging of publicly available datasets addresses the lack of consolidated information on dataset creation and characteristics. Finally, the focus on terminology addresses the current lack of consistent definitions for important concepts, such as hard and soft skills, and terms relating to skill extraction and classification.
Abstract:Skill Extraction involves identifying skills and qualifications mentioned in documents such as job postings and resumes. The task is commonly tackled by training supervised models using a sequence labeling approach with BIO tags. However, the reliance on manually annotated data limits the generalizability of such approaches. Moreover, the common BIO setting limits the ability of the models to capture complex skill patterns and handle ambiguous mentions. In this paper, we explore the use of in-context learning to overcome these challenges, on a benchmark of 6 uniformized skill extraction datasets. Our approach leverages the few-shot learning capabilities of large language models (LLMs) to identify and extract skills from sentences. We show that LLMs, despite not being on par with traditional supervised models in terms of performance, can better handle syntactically complex skill mentions in skill extraction tasks.
Abstract:Recent approaches in skill matching, employing synthetic training data for classification or similarity model training, have shown promising results, reducing the need for time-consuming and expensive annotations. However, previous synthetic datasets have limitations, such as featuring only one skill per sentence and generally comprising short sentences. In this paper, we introduce JobSkape, a framework to generate synthetic data that tackles these limitations, specifically designed to enhance skill-to-taxonomy matching. Within this framework, we create SkillSkape, a comprehensive open-source synthetic dataset of job postings tailored for skill-matching tasks. We introduce several offline metrics that show that our dataset resembles real-world data. Additionally, we present a multi-step pipeline for skill extraction and matching tasks using large language models (LLMs), benchmarking against known supervised methodologies. We outline that the downstream evaluation results on real-world data can beat baselines, underscoring its efficacy and adaptability.