Abstract:Hackathons have become popular collaborative events for accelerating the development of creative ideas and prototypes. There are several case studies showcasing creative outcomes across domains such as industry, education, and research. However, there are no large-scale studies on creativity in hackathons which can advance theory on how hackathon formats lead to creative outcomes. We conducted a computational analysis of 193,353 hackathon projects. By operationalizing creativity through usefulness and novelty, we refined our dataset to 10,363 projects, allowing us to analyze how participant characteristics, collaboration patterns, and hackathon setups influence the development of creative projects. The contribution of our paper is twofold: We identified means for organizers to foster creativity in hackathons. We also explore the use of large language models (LLMs) to augment the evaluation of creative outcomes and discuss challenges and opportunities of doing this, which has implications for creativity research at large.
Abstract:The recent leaps in complexity and fluency of Large Language Models (LLMs) mean that, for the first time in human history, people can interact with computers using natural language alone. This creates monumental possibilities of automation and accessibility of computing, but also raises severe security and safety threats: When everyone can interact with LLMs, everyone can potentially break into the systems running LLMs. All it takes is creative use of language. This paper presents Hacc-Man, a game which challenges its players to "jailbreak" an LLM: subvert the LLM to output something that it is not intended to. Jailbreaking is at the intersection between creative problem solving and LLM security. The purpose of the game is threefold: 1. To heighten awareness of the risks of deploying fragile LLMs in everyday systems, 2. To heighten people's self-efficacy in interacting with LLMs, and 3. To discover the creative problem solving strategies, people deploy in this novel context.
Abstract:Generative AI, i.e., the group of technologies that automatically generate visual or written content based on text prompts, has undergone a leap in complexity and become widely available within just a few years. Such technologies potentially introduce a massive disruption to creative fields. This paper presents the results of a qualitative survey ($N$ = 23) investigating how creative professionals think about generative AI. The results show that the advancement of these AI models prompts important reflections on what defines creativity and how creatives imagine using AI to support their workflows. Based on these reflections, we discuss how we might design \textit{participatory AI} in the domain of creative expertise with the goal of empowering creative professionals in their present and future coexistence with AI.