Abstract:The role of memorization in machine learning (ML) has garnered significant attention, particularly as modern models are empirically observed to memorize fragments of training data. Previous theoretical analyses, such as Feldman's seminal work, attribute memorization to the prevalence of long-tail distributions in training data, proving it unavoidable for samples that lie in the tail of the distribution. However, the intersection of memorization and trustworthy ML research reveals critical gaps. While prior research in memorization in trustworthy ML has solely focused on class imbalance, recent work starts to differentiate class-level rarity from atypical samples, which are valid and rare intra-class instances. However, a critical research gap remains: current frameworks conflate atypical samples with noisy and erroneous data, neglecting their divergent impacts on fairness, robustness, and privacy. In this work, we conduct a thorough survey of existing research and their findings on trustworthy ML and the role of memorization. More and beyond, we identify and highlight uncharted gaps and propose new revenues in this research direction. Since existing theoretical and empirical analyses lack the nuances to disentangle memorization's duality as both a necessity and a liability, we formalize three-level long-tail granularity - class imbalance, atypicality, and noise - to reveal how current frameworks misapply these levels, perpetuating flawed solutions. By systematizing this granularity, we draw a roadmap for future research. Trustworthy ML must reconcile the nuanced trade-offs between memorizing atypicality for fairness assurance and suppressing noise for robustness and privacy guarantee. Redefining memorization via this granularity reshapes the theoretical foundation for trustworthy ML, and further affords an empirical prerequisite for models that align performance with societal trust.
Abstract:Hackathons have become popular collaborative events for accelerating the development of creative ideas and prototypes. There are several case studies showcasing creative outcomes across domains such as industry, education, and research. However, there are no large-scale studies on creativity in hackathons which can advance theory on how hackathon formats lead to creative outcomes. We conducted a computational analysis of 193,353 hackathon projects. By operationalizing creativity through usefulness and novelty, we refined our dataset to 10,363 projects, allowing us to analyze how participant characteristics, collaboration patterns, and hackathon setups influence the development of creative projects. The contribution of our paper is twofold: We identified means for organizers to foster creativity in hackathons. We also explore the use of large language models (LLMs) to augment the evaluation of creative outcomes and discuss challenges and opportunities of doing this, which has implications for creativity research at large.
Abstract:The U.S. Securities and Exchange Commission (SEC) requires that public companies file financial reports tagging numbers with the machine readable inline eXtensible Business Reporting Language (iXBRL) standard. However, the highly complex and highly granular taxonomy defined by iXBRL limits label transferability across domains. In this paper, we introduce the Hierarchical Financial Key Performance Indicator (HiFi-KPI) dataset, designed to facilitate numerical KPI extraction at specified levels of granularity from unstructured financial text. Our approach organizes a 218,126-label hierarchy using a taxonomy based grouping method, investigating which taxonomy layer provides the most meaningful structure. HiFi-KPI comprises ~1.8M paragraphs and ~5M entities, each linked to a label in the iXBRL-specific calculation and presentation taxonomies. We provide baselines using encoder-based approaches and structured extraction using Large Language Models (LLMs). To simplify LLM inference and evaluation, we additionally release HiFi-KPI Lite, a manually curated subset with four expert-mapped labels. We publicly release all artifacts
Abstract:Providing high-quality feedback is crucial for student success but is constrained by time, cost, and limited data availability. We introduce Synthetic Educational Feedback Loops (SEFL), a novel framework designed to deliver immediate, on-demand feedback at scale without relying on extensive, real-world student data. In SEFL, two large language models (LLMs) operate in teacher--student roles to simulate assignment completion and formative feedback, generating abundant synthetic pairs of student work and corresponding critiques. We then fine-tune smaller, more computationally efficient LLMs on these synthetic pairs, enabling them to replicate key features of high-quality, goal-oriented feedback. Unlike personalized tutoring approaches that offer multi-turn, individualized instruction, SEFL specifically focuses on replicating the teacher-->student feedback loop for diverse assignments. Through both LLM-as-a-judge and human evaluations, we demonstrate that SEFL-tuned models outperform their non-tuned counterparts in feedback quality, clarity, and timeliness. These findings reveal SEFL's potential to transform feedback processes for higher education and beyond, offering an ethical and scalable alternative to conventional manual feedback cycles.
Abstract:This paper investigates whether Large Language Models (LLMs), fine-tuned on synthetic but domain-representative data, can perform the twofold task of (i) slot and intent detection and (ii) natural language response generation for a smart home assistant, while running solely on resource-limited, CPU-only edge hardware. We fine-tune LLMs to produce both JSON action calls and text responses. Our experiments show that 16-bit and 8-bit quantized variants preserve high accuracy on slot and intent detection and maintain strong semantic coherence in generated text, while the 4-bit model, while retaining generative fluency, suffers a noticeable drop in device-service classification accuracy. Further evaluations on noisy human (non-synthetic) prompts and out-of-domain intents confirm the models' generalization ability, obtaining around 80--86\% accuracy. While the average inference time is 5--6 seconds per query -- acceptable for one-shot commands but suboptimal for multi-turn dialogue -- our results affirm that an on-device LLM can effectively unify command interpretation and flexible response generation for home automation without relying on specialized hardware.
Abstract:Large Language Models (LLMs) have revolutionized Natural Language Processing (NLP) based applications including automated text generation, question answering, chatbots, and others. However, they face a significant challenge: hallucinations, where models produce plausible-sounding but factually incorrect responses. This undermines trust and limits the applicability of LLMs in different domains. Knowledge Graphs (KGs), on the other hand, provide a structured collection of interconnected facts represented as entities (nodes) and their relationships (edges). In recent research, KGs have been leveraged to provide context that can fill gaps in an LLM understanding of certain topics offering a promising approach to mitigate hallucinations in LLMs, enhancing their reliability and accuracy while benefiting from their wide applicability. Nonetheless, it is still a very active area of research with various unresolved open problems. In this paper, we discuss these open challenges covering state-of-the-art datasets and benchmarks as well as methods for knowledge integration and evaluating hallucinations. In our discussion, we consider the current use of KGs in LLM systems and identify future directions within each of these challenges.
Abstract:Wikipedia's perceived high quality and broad language coverage have established it as a fundamental resource in multilingual NLP. In the context of low-resource languages, however, these quality assumptions are increasingly being scrutinised. This paper critically examines the data quality of Wikipedia in a non-English setting by subjecting it to various quality filtering techniques, revealing widespread issues such as a high percentage of one-line articles and duplicate articles. We evaluate the downstream impact of quality filtering on Wikipedia and find that data quality pruning is an effective means for resource-efficient training without hurting performance, especially for low-resource languages. Moreover, we advocate for a shift in perspective from seeking a general definition of data quality towards a more language- and task-specific one. Ultimately, we aim for this study to serve as a guide to using Wikipedia for pretraining in a multilingual setting.
Abstract:Understanding how linguistic knowledge is encoded in language models is crucial for improving their generalisation capabilities. In this paper, we investigate the processing of morphosyntactic phenomena, by leveraging a recently proposed method for probing language models via Shapley Head Values (SHVs). Using the English language BLiMP dataset, we test our approach on two widely used models, BERT and RoBERTa, and compare how linguistic constructions such as anaphor agreement and filler-gap dependencies are handled. Through quantitative pruning and qualitative clustering analysis, we demonstrate that attention heads responsible for processing related linguistic phenomena cluster together. Our results show that SHV-based attributions reveal distinct patterns across both models, providing insights into how language models organize and process linguistic information. These findings support the hypothesis that language models learn subnetworks corresponding to linguistic theory, with potential implications for cross-linguistic model analysis and interpretability in Natural Language Processing (NLP).
Abstract:Language Confusion is a phenomenon where Large Language Models (LLMs) generate text that is neither in the desired language, nor in a contextually appropriate language. This phenomenon presents a critical challenge in text generation by LLMs, often appearing as erratic and unpredictable behavior. We hypothesize that there are linguistic regularities to this inherent vulnerability in LLMs and shed light on patterns of language confusion across LLMs. We introduce a novel metric, Language Confusion Entropy, designed to directly measure and quantify this confusion, based on language distributions informed by linguistic typology and lexical variation. Comprehensive comparisons with the Language Confusion Benchmark (Marchisio et al., 2024) confirm the effectiveness of our metric, revealing patterns of language confusion across LLMs. We further link language confusion to LLM security, and find patterns in the case of multilingual embedding inversion attacks. Our analysis demonstrates that linguistic typology offers theoretically grounded interpretation, and valuable insights into leveraging language similarities as a prior for LLM alignment and security.
Abstract:Large Language Models (LLMs) are susceptible to malicious influence by cyber attackers through intrusions such as adversarial, backdoor, and embedding inversion attacks. In response, the burgeoning field of LLM Security aims to study and defend against such threats. Thus far, the majority of works in this area have focused on monolingual English models, however, emerging research suggests that multilingual LLMs may be more vulnerable to various attacks than their monolingual counterparts. While previous work has investigated embedding inversion over a small subset of European languages, it is challenging to extrapolate these findings to languages from different linguistic families and with differing scripts. To this end, we explore the security of multilingual LLMs in the context of embedding inversion attacks and investigate cross-lingual and cross-script inversion across 20 languages, spanning over 8 language families and 12 scripts. Our findings indicate that languages written in Arabic script and Cyrillic script are particularly vulnerable to embedding inversion, as are languages within the Indo-Aryan language family. We further observe that inversion models tend to suffer from language confusion, sometimes greatly reducing the efficacy of an attack. Accordingly, we systematically explore this bottleneck for inversion models, uncovering predictable patterns which could be leveraged by attackers. Ultimately, this study aims to further the field's understanding of the outstanding security vulnerabilities facing multilingual LLMs and raise awareness for the languages most at risk of negative impact from these attacks.