Sid
Abstract:Dramatic increases in the capabilities of neural network models in recent years are driven by scaling model size, training data, and corresponding computational resources. To develop the exceedingly large networks required in modern applications, such as large language models (LLMs), model training is distributed across tens of thousands of hardware accelerators (e.g. GPUs), requiring orchestration of computation and communication across large computing clusters. In this work, we demonstrate that careful consideration of hardware configuration and parallelization strategy is critical for effective (i.e. compute- and cost-efficient) scaling of model size, training data, and total computation. We conduct an extensive empirical study of the performance of large-scale LLM training workloads across model size, hardware configurations, and distributed parallelization strategies. We demonstrate that: (1) beyond certain scales, overhead incurred from certain distributed communication strategies leads parallelization strategies previously thought to be sub-optimal in fact become preferable; and (2) scaling the total number of accelerators for large model training quickly yields diminishing returns even when hardware and parallelization strategies are properly optimized, implying poor marginal performance per additional unit of power or GPU-hour.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Abstract:Graph embedding methods produce unsupervised node features from graphs that can then be used for a variety of machine learning tasks. Modern graphs, particularly in industrial applications, contain billions of nodes and trillions of edges, which exceeds the capability of existing embedding systems. We present PyTorch-BigGraph (PBG), an embedding system that incorporates several modifications to traditional multi-relation embedding systems that allow it to scale to graphs with billions of nodes and trillions of edges. PBG uses graph partitioning to train arbitrarily large embeddings on either a single machine or in a distributed environment. We demonstrate comparable performance with existing embedding systems on common benchmarks, while allowing for scaling to arbitrarily large graphs and parallelization on multiple machines. We train and evaluate embeddings on several large social network graphs as well as the full Freebase dataset, which contains over 100 million nodes and 2 billion edges.