Abstract:Anderson acceleration is an effective technique for enhancing the efficiency of fixed-point iterations; however, analyzing its convergence in nonsmooth settings presents significant challenges. In this paper, we investigate a class of nonsmooth optimization algorithms characterized by the active manifold identification property. This class includes a diverse array of methods such as the proximal point method, proximal gradient method, proximal linear method, proximal coordinate descent method, Douglas-Rachford splitting (or the alternating direction method of multipliers), and the iteratively reweighted $\ell_1$ method, among others. Under the assumption that the optimization problem possesses an active manifold at a stationary point, we establish a local R-linear convergence rate for the Anderson-accelerated algorithm. Our extensive numerical experiments further highlight the robust performance of the proposed Anderson-accelerated methods.
Abstract:Despite the rapid development of Chinese vision-language models (VLMs), most existing Chinese vision-language (VL) datasets are constructed on Western-centric images from existing English VL datasets. The cultural bias in the images makes these datasets unsuitable for evaluating VLMs in Chinese culture. To remedy this issue, we present a new Chinese Vision- Language Understanding Evaluation (CVLUE) benchmark dataset, where the selection of object categories and images is entirely driven by Chinese native speakers, ensuring that the source images are representative of Chinese culture. The benchmark contains four distinct VL tasks ranging from image-text retrieval to visual question answering, visual grounding and visual dialogue. We present a detailed statistical analysis of CVLUE and provide a baseline performance analysis with several open-source multilingual VLMs on CVLUE and its English counterparts to reveal their performance gap between English and Chinese. Our in-depth category-level analysis reveals a lack of Chinese cultural knowledge in existing VLMs. We also find that fine-tuning on Chinese culture-related VL datasets effectively enhances VLMs' understanding of Chinese culture.
Abstract:The adoption of large cloud-based models for inference has been hampered by concerns about the privacy leakage of end-user data. One method to mitigate this leakage is to add local differentially private noise to queries before sending them to the cloud, but this degrades utility as a side effect. Our key insight is that knowledge available in the noisy labels returned from performing inference on noisy inputs can be aggregated and used to recover the correct labels. We implement this insight in LDPKiT, which stands for Local Differentially-Private and Utility-Preserving Inference via Knowledge Transfer. LDPKiT uses the noisy labels returned from querying a set of noised inputs to train a local model (noise^2), which is then used to perform inference on the original set of inputs. Our experiments on CIFAR-10, Fashion-MNIST, SVHN, and CARER NLP datasets demonstrate that LDPKiT can improve utility without compromising privacy. For instance, on CIFAR-10, compared to a standard $\epsilon$-LDP scheme with $\epsilon=15$, which provides a weak privacy guarantee, LDPKiT can achieve nearly the same accuracy (within 1% drop) with $\epsilon=7$, offering an enhanced privacy guarantee. Moreover, the benefits of using LDPKiT increase at higher, more privacy-protective noise levels. For Fashion-MNIST and CARER, LDPKiT's accuracy on the sensitive dataset with $\epsilon=7$ not only exceeds the average accuracy of the standard $\epsilon$-LDP scheme with $\epsilon=7$ by roughly 20% and 9% but also outperforms the standard $\epsilon$-LDP scheme with $\epsilon=15$, a scenario with less noise and minimal privacy protection. We also perform Zest distance measurements to demonstrate that the type of distillation performed by LDPKiT is different from a model extraction attack.
Abstract:Iteratively reweighted L1 (IRL1) algorithm is a common algorithm for solving sparse optimization problems with nonconvex and nonsmooth regularization. The development of its acceleration algorithm, often employing Nesterov acceleration, has sparked significant interest. Nevertheless, the convergence and complexity analysis of these acceleration algorithms consistently poses substantial challenges. Recently, Anderson acceleration has gained prominence owing to its exceptional performance for speeding up fixed-point iteration, with numerous recent studies applying it to gradient-based algorithms. Motivated by the powerful impact of Anderson acceleration, we propose an Anderson-accelerated IRL1 algorithm and establish its local linear convergence rate. We extend this convergence result, typically observed in smooth settings, to a nonsmooth scenario. Importantly, our theoretical results do not depend on the Kurdyka-Lojasiewicz condition, a necessary condition in existing Nesterov acceleration-based algorithms. Furthermore, to ensure global convergence, we introduce a globally convergent Anderson accelerated IRL1 algorithm by incorporating a classical nonmonotone line search condition. Experimental results indicate that our algorithm outperforms existing Nesterov acceleration-based algorithms.
Abstract:Interactive Video Object Segmentation (iVOS) is a challenging task that requires real-time human-computer interaction. To improve the user experience, it is important to consider the user's input habits, segmentation quality, running time and memory consumption.However, existing methods compromise user experience with single input mode and slow running speed. Specifically, these methods only allow the user to interact with one single frame, which limits the expression of the user's intent.To overcome these limitations and better align with people's usage habits, we propose a framework that can accept multiple frames simultaneously and explore synergistic interaction across frames (SIAF). Concretely, we designed the Across-Frame Interaction Module that enables users to annotate different objects freely on multiple frames. The AFI module will migrate scribble information among multiple interactive frames and generate multi-frame masks. Additionally, we employ the id-queried mechanism to process multiple objects in batches. Furthermore, for a more efficient propagation and lightweight model, we design a truncated re-propagation strategy to replace the previous multi-round fusion module, which employs an across-round memory that stores important interaction information. Our SwinB-SIAF achieves new state-of-the-art performance on DAVIS 2017 (89.6%, J&F@60). Moreover, our R50-SIAF is more than 3 faster than the state-of-the-art competitor under challenging multi-object scenarios.
Abstract:Audio-visual video segmentation~(AVVS) aims to generate pixel-level maps of sound-producing objects within image frames and ensure the maps faithfully adhere to the given audio, such as identifying and segmenting a singing person in a video. However, existing methods exhibit two limitations: 1) they address video temporal features and audio-visual interactive features separately, disregarding the inherent spatial-temporal dependence of combined audio and video, and 2) they inadequately introduce audio constraints and object-level information during the decoding stage, resulting in segmentation outcomes that fail to comply with audio directives. To tackle these issues, we propose a decoupled audio-video transformer that combines audio and video features from their respective temporal and spatial dimensions, capturing their combined dependence. To optimize memory consumption, we design a block, which, when stacked, enables capturing audio-visual fine-grained combinatorial-dependence in a memory-efficient manner. Additionally, we introduce audio-constrained queries during the decoding phase. These queries contain rich object-level information, ensuring the decoded mask adheres to the sounds. Experimental results confirm our approach's effectiveness, with our framework achieving a new SOTA performance on all three datasets using two backbones. The code is available at \url{https://github.com/aspirinone/CATR.github.io}
Abstract:Targeted diagnosis and treatment plans for patients with coronary artery disease vary according to atherosclerotic plaque component. Coronary CT angiography (CCTA) is widely used for artery imaging and determining the stenosis degree. However, the limited spatial resolution and susceptibility to artifacts fail CCTA in obtaining lumen morphological characteristics and plaque composition. It can be settled by invasive optical coherence tomography (OCT) without much trouble for physicians, but bringing higher costs and potential risks to patients. Therefore, it is clinically critical to introduce annotations of plaque tissue and lumen characteristics from OCT to paired CCTA scans, denoted as \textbf{the O2CTA problem} in this paper. We propose a method to handle the O2CTA problem. CCTA scans are first reconstructed into multi-planar reformatted (MPR) images, which agree with OCT images in term of semantic contents. The artery segment in OCT, which is manually labelled, is then spatially aligned with the entire artery in MPR images via the proposed alignment strategy. Finally, a classification model involving a 3D CNN and a Transformer, is learned to extract local features and capture dependence along arteries. Experiments on 55 paired OCT and CCTA we curate demonstrate that it is feasible to classify the CCTA based on the OCT labels, with an accuracy of 86.2%, while the manual readings of OCT and CCTA vary significantly, with a Kappa coefficient of 0.113. We will make our source codes, models, data, and results publicly available to benefit the research community.
Abstract:Acoustic propagation models are widely used in numerous oceanic and other underwater applications. Most conventional models are approximate solutions of the acoustic wave equation, and require accurate environmental knowledge to be available beforehand. Environmental parameters may not always be easily or accurately measurable. While data-driven techniques might allow us to model acoustic propagation without the need for extensive prior environmental knowledge, such techniques tend to be data-hungry and often infeasible in oceanic applications where data collection is difficult and expensive. We propose a data-aided ray physics based high frequency acoustic propagation modeling approach that enables us to train models with only a small amount of data. The proposed framework is not only data-efficient, but also offers flexibility to incorporate varying degrees of environmental knowledge, and generalizes well to permit extrapolation beyond the area where data was collected. We demonstrate the feasibility and applicability of our method through four numerical case studies, and one controlled experiment. We also benchmark our method's performance against classical data-driven techniques.