The adoption of large cloud-based models for inference has been hampered by concerns about the privacy leakage of end-user data. One method to mitigate this leakage is to add local differentially private noise to queries before sending them to the cloud, but this degrades utility as a side effect. Our key insight is that knowledge available in the noisy labels returned from performing inference on noisy inputs can be aggregated and used to recover the correct labels. We implement this insight in LDPKiT, which stands for Local Differentially-Private and Utility-Preserving Inference via Knowledge Transfer. LDPKiT uses the noisy labels returned from querying a set of noised inputs to train a local model (noise^2), which is then used to perform inference on the original set of inputs. Our experiments on CIFAR-10, Fashion-MNIST, SVHN, and CARER NLP datasets demonstrate that LDPKiT can improve utility without compromising privacy. For instance, on CIFAR-10, compared to a standard $\epsilon$-LDP scheme with $\epsilon=15$, which provides a weak privacy guarantee, LDPKiT can achieve nearly the same accuracy (within 1% drop) with $\epsilon=7$, offering an enhanced privacy guarantee. Moreover, the benefits of using LDPKiT increase at higher, more privacy-protective noise levels. For Fashion-MNIST and CARER, LDPKiT's accuracy on the sensitive dataset with $\epsilon=7$ not only exceeds the average accuracy of the standard $\epsilon$-LDP scheme with $\epsilon=7$ by roughly 20% and 9% but also outperforms the standard $\epsilon$-LDP scheme with $\epsilon=15$, a scenario with less noise and minimal privacy protection. We also perform Zest distance measurements to demonstrate that the type of distillation performed by LDPKiT is different from a model extraction attack.