Abstract:Anderson acceleration is an effective technique for enhancing the efficiency of fixed-point iterations; however, analyzing its convergence in nonsmooth settings presents significant challenges. In this paper, we investigate a class of nonsmooth optimization algorithms characterized by the active manifold identification property. This class includes a diverse array of methods such as the proximal point method, proximal gradient method, proximal linear method, proximal coordinate descent method, Douglas-Rachford splitting (or the alternating direction method of multipliers), and the iteratively reweighted $\ell_1$ method, among others. Under the assumption that the optimization problem possesses an active manifold at a stationary point, we establish a local R-linear convergence rate for the Anderson-accelerated algorithm. Our extensive numerical experiments further highlight the robust performance of the proposed Anderson-accelerated methods.
Abstract:We introduce a strict saddle property for $\ell_p$ regularized functions, and propose an iterative reweighted $\ell_1$ algorithm to solve the $\ell_p$ regularized problems. The algorithm is guaranteed to converge only to local minimizers when randomly initialized. The strict saddle property is shown generic on these sparse optimization problems. Those analyses as well as the proposed algorithm can be easily extended to general nonconvex regularized problems.