Abstract:In-context learning has been extensively validated in large language models. However, the mechanism and selection strategy for in-context example selection, which is a crucial ingredient in this approach, lacks systematic and in-depth research. In this paper, we propose a data compression approach to the selection of in-context examples. We introduce a two-stage method that can effectively choose relevant examples and retain sufficient information about the training dataset within the in-context examples. Our method shows a significant improvement of an average of 5.90% across five different real-world datasets using four language models.
Abstract:In this paper, we address the issue of using logic rules to explain the results from legal case retrieval. The task is critical to legal case retrieval because the users (e.g., lawyers or judges) are highly specialized and require the system to provide logical, faithful, and interpretable explanations before making legal decisions. Recently, research efforts have been made to learn explainable legal case retrieval models. However, these methods usually select rationales (key sentences) from the legal cases as explanations, failing to provide faithful and logically correct explanations. In this paper, we propose Neural-Symbolic enhanced Legal Case Retrieval (NS-LCR), a framework that explicitly conducts reasoning on the matching of legal cases through learning case-level and law-level logic rules. The learned rules are then integrated into the retrieval process in a neuro-symbolic manner. Benefiting from the logic and interpretable nature of the logic rules, NS-LCR is equipped with built-in faithful explainability. We also show that NS-LCR is a model-agnostic framework that can be plugged in for multiple legal retrieval models. To showcase NS-LCR's superiority, we enhance existing benchmarks by adding manually annotated logic rules and introducing a novel explainability metric using Large Language Models (LLMs). Our comprehensive experiments reveal NS-LCR's effectiveness for ranking, alongside its proficiency in delivering reliable explanations for legal case retrieval.
Abstract:In recent years, RGB-T salient object detection (SOD) has attracted continuous attention, which makes it possible to identify salient objects in environments such as low light by introducing thermal image. However, most of the existing RGB-T SOD models focus on how to perform cross-modality feature fusion, ignoring whether thermal image is really always matter in SOD task. Starting from the definition and nature of this task, this paper rethinks the connotation of thermal modality, and proposes a network named TNet to solve the RGB-T SOD task. In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image, so as to regulate the role played by the two modalities. In addition, considering the role of thermal modality, we set up different cross-modality interaction mechanisms in the encoding phase and the decoding phase. On the one hand, we introduce a semantic constraint provider to enrich the semantics of thermal images in the encoding phase, which makes thermal modality more suitable for the SOD task. On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality. Extensive experiments on three datasets show that the proposed TNet achieves competitive performance compared with 20 state-of-the-art methods.