Abstract:Existing open-vocabulary object detection (OVD) develops methods for testing unseen categories by aligning object region embeddings with corresponding VLM features. A recent study leverages the idea that VLMs implicitly learn compositional structures of semantic concepts within the image. Instead of using an individual region embedding, it utilizes a bag of region embeddings as a new representation to incorporate compositional structures into the OVD task. However, this approach often fails to capture the contextual concepts of each region, leading to noisy compositional structures. This results in only marginal performance improvements and reduced efficiency. To address this, we propose a novel concept-based alignment method that samples a more powerful and efficient compositional structure. Our approach groups contextually related ``concepts'' into a bag and adjusts the scale of concepts within the bag for more effective embedding alignment. Combined with Faster R-CNN, our method achieves improvements of 2.6 box AP50 and 0.5 mask AP over prior work on novel categories in the open-vocabulary COCO and LVIS benchmarks. Furthermore, our method reduces CLIP computation in FLOPs by 80.3% compared to previous research, significantly enhancing efficiency. Experimental results demonstrate that the proposed method outperforms previous state-of-the-art models on the OVD datasets.
Abstract:Open-vocabulary segmentation (OVS) has gained attention for its ability to recognize a broader range of classes. However, OVS models show significant performance drops when applied to unseen domains beyond the previous training dataset. Fine-tuning these models on new datasets can improve performance, but often leads to the catastrophic forgetting of previously learned knowledge. To address this issue, we propose a method that allows OVS models to learn information from new domains while preserving prior knowledge. Our approach begins by evaluating the input sample's proximity to multiple domains, using precomputed multivariate normal distributions for each domain. Based on this prediction, we dynamically interpolate between the weights of the pre-trained decoder and the fine-tuned decoders. Extensive experiments demonstrate that this approach allows OVS models to adapt to new domains while maintaining performance on the previous training dataset. The source code is available at https://github.com/dongjunhwang/dwi.
Abstract:Machine unlearning aims to selectively remove specific knowledge from a model. Current methods, such as task arithmetic, rely on fine-tuning models on the forget set, generating a task vector, and subtracting it from the original model. However, we argue the effectiveness of this approach is highly sensitive to hyperparameter selection, necessitating careful validation to identify the best model among many fine-tuned candidates. In this paper, we propose a novel method that leverages all given fine-tuned models rather than selecting a single one. By constructing task vectors from models trained with varied hyperparameters and merging only the components of the task vectors with consistent signs, we perform unlearning by negating the merged task vector from the original model. Given that existing methods also utilize multiple fine-tuned models, our approach delivers more effective unlearning without incurring additional computational costs. We demonstrate the effectiveness of our method on both vision-language models and standard image classification models, showing improved unlearning performance with minimal degradation on the retain set, outperforming state-of-the-art techniques.
Abstract:Recent Vision Transformer (ViT)-based methods for Image Super-Resolution have demonstrated impressive performance. However, they suffer from significant complexity, resulting in high inference times and memory usage. Additionally, ViT models using Window Self-Attention (WSA) face challenges in processing regions outside their windows. To address these issues, we propose the Low-to-high Multi-Level Transformer (LMLT), which employs attention with varying feature sizes for each head. LMLT divides image features along the channel dimension, gradually reduces spatial size for lower heads, and applies self-attention to each head. This approach effectively captures both local and global information. By integrating the results from lower heads into higher heads, LMLT overcomes the window boundary issues in self-attention. Extensive experiments show that our model significantly reduces inference time and GPU memory usage while maintaining or even surpassing the performance of state-of-the-art ViT-based Image Super-Resolution methods. Our codes are availiable at https://github.com/jwgdmkj/LMLT.
Abstract:Hallucinations in Multimodal Large Language Models (MLLMs) where generated responses fail to accurately reflect the given image pose a significant challenge to their reliability. To address this, we introduce ConVis, a novel training-free contrastive decoding method. ConVis leverages a text-to-image (T2I) generation model to semantically reconstruct the given image from hallucinated captions. By comparing the contrasting probability distributions produced by the original and reconstructed images, ConVis enables MLLMs to capture visual contrastive signals that penalize hallucination generation. Notably, this method operates purely within the decoding process, eliminating the need for additional data or model updates. Our extensive experiments on five popular benchmarks demonstrate that ConVis effectively reduces hallucinations across various MLLMs, highlighting its potential to enhance model reliability.
Abstract:State-of-the-art techniques in weakly-supervised semantic segmentation (WSSS) using image-level labels exhibit severe performance degradation on driving scene datasets such as Cityscapes. To address this challenge, we develop a new WSSS framework tailored to driving scene datasets. Based on extensive analysis of dataset characteristics, we employ Contrastive Language-Image Pre-training (CLIP) as our baseline to obtain pseudo-masks. However, CLIP introduces two key challenges: (1) pseudo-masks from CLIP lack in representing small object classes, and (2) these masks contain notable noise. We propose solutions for each issue as follows. (1) We devise Global-Local View Training that seamlessly incorporates small-scale patches during model training, thereby enhancing the model's capability to handle small-sized yet critical objects in driving scenes (e.g., traffic light). (2) We introduce Consistency-Aware Region Balancing (CARB), a novel technique that discerns reliable and noisy regions through evaluating the consistency between CLIP masks and segmentation predictions. It prioritizes reliable pixels over noisy pixels via adaptive loss weighting. Notably, the proposed method achieves 51.8\% mIoU on the Cityscapes test dataset, showcasing its potential as a strong WSSS baseline on driving scene datasets. Experimental results on CamVid and WildDash2 demonstrate the effectiveness of our method across diverse datasets, even with small-scale datasets or visually challenging conditions. The code is available at https://github.com/k0u-id/CARB.
Abstract:Weakly-supervised semantic segmentation (WSSS) performs pixel-wise classification given only image-level labels for training. Despite the difficulty of this task, the research community has achieved promising results over the last five years. Still, current WSSS literature misses the detailed sense of how well the methods perform on different sizes of objects. Thus we propose a novel evaluation metric to provide a comprehensive assessment across different object sizes and collect a size-balanced evaluation set to complement PASCAL VOC. With these two gadgets, we reveal that the existing WSSS methods struggle in capturing small objects. Furthermore, we propose a size-balanced cross-entropy loss coupled with a proper training strategy. It generally improves existing WSSS methods as validated upon ten baselines on three different datasets.
Abstract:Supervised learning of image classifiers distills human knowledge into a parametric model through pairs of images and corresponding labels (X,Y). We argue that this simple and widely used representation of human knowledge neglects rich auxiliary information from the annotation procedure, such as the time-series of mouse traces and clicks left after image selection. Our insight is that such annotation byproducts Z provide approximate human attention that weakly guides the model to focus on the foreground cues, reducing spurious correlations and discouraging shortcut learning. To verify this, we create ImageNet-AB and COCO-AB. They are ImageNet and COCO training sets enriched with sample-wise annotation byproducts, collected by replicating the respective original annotation tasks. We refer to the new paradigm of training models with annotation byproducts as learning using annotation byproducts (LUAB). We show that a simple multitask loss for regressing Z together with Y already improves the generalisability and robustness of the learned models. Compared to the original supervised learning, LUAB does not require extra annotation costs. ImageNet-AB and COCO-AB are at https://github.com/naver-ai/NeglectedFreeLunch.
Abstract:Weakly supervised semantic segmentation (WSSS) methods are often built on pixel-level localization maps obtained from a classifier. However, training on class labels only, classifiers suffer from the spurious correlation between foreground and background cues (e.g. train and rail), fundamentally bounding the performance of WSSS. There have been previous endeavors to address this issue with additional supervision. We propose a novel source of information to distinguish foreground from the background: Out-of-Distribution (OoD) data, or images devoid of foreground object classes. In particular, we utilize the hard OoDs that the classifier is likely to make false-positive predictions. These samples typically carry key visual features on the background (e.g. rail) that the classifiers often confuse as foreground (e.g. train), so these cues let classifiers correctly suppress spurious background cues. Acquiring such hard OoDs does not require an extensive amount of annotation efforts; it only incurs a few additional image-level labeling costs on top of the original efforts to collect class labels. We propose a method, W-OoD, for utilizing the hard OoDs. W-OoD achieves state-of-the-art performance on Pascal VOC 2012.
Abstract:Weakly-supervised object localization (WSOL) enables finding an object using a dataset without any localization information. By simply training a classification model using only image-level annotations, the feature map of the model can be utilized as a score map for localization. In spite of many WSOL methods proposing novel strategies, there has not been any de facto standard about how to normalize the class activation map (CAM). Consequently, many WSOL methods have failed to fully exploit their own capacity because of the misuse of a normalization method. In this paper, we review many existing normalization methods and point out that they should be used according to the property of the given dataset. Additionally, we propose a new normalization method which substantially enhances the performance of any CAM-based WSOL methods. Using the proposed normalization method, we provide a comprehensive evaluation over three datasets (CUB, ImageNet and OpenImages) on three different architectures and observe significant performance gains over the conventional min-max normalization method in all the evaluated cases.