Abstract:Object-centric learning (OCL) seeks to learn representations that only encode an object, isolated from other objects or background cues in a scene. This approach underpins various aims, including out-of-distribution (OOD) generalization, sample-efficient composition, and modeling of structured environments. Most research has focused on developing unsupervised mechanisms that separate objects into discrete slots in the representation space, evaluated using unsupervised object discovery. However, with recent sample-efficient segmentation models, we can separate objects in the pixel space and encode them independently. This achieves remarkable zero-shot performance on OOD object discovery benchmarks, is scalable to foundation models, and can handle a variable number of slots out-of-the-box. Hence, the goal of OCL methods to obtain object-centric representations has been largely achieved. Despite this progress, a key question remains: How does the ability to separate objects within a scene contribute to broader OCL objectives, such as OOD generalization? We address this by investigating the OOD generalization challenge caused by spurious background cues through the lens of OCL. We propose a novel, training-free probe called $\textbf{Object-Centric Classification with Applied Masks (OCCAM)}$, demonstrating that segmentation-based encoding of individual objects significantly outperforms slot-based OCL methods. However, challenges in real-world applications remain. We provide the toolbox for the OCL community to use scalable object-centric representations, and focus on practical applications and fundamental questions, such as understanding object perception in human cognition. Our code is available $\href{https://github.com/AlexanderRubinstein/OCCAM}{here}$.
Abstract:This paper studies continual test-time adaptation (CTTA), the task of adapting a model to constantly changing unseen domains in testing while preserving previously learned knowledge. Existing CTTA methods mostly focus on adaptation to the current test domain only, overlooking generalization to arbitrary test domains a model may face in the future. To tackle this limitation, we present a novel online domain-invariant learning framework for CTTA, dubbed DiCoTTA. DiCoTTA aims to learn feature representation to be invariant to both current and previous test domains on the fly during testing. To this end, we propose a new model architecture and a test-time adaptation strategy dedicated to learning domain-invariant features without corrupting semantic contents, along with a new data structure and optimization algorithm for effectively managing information from previous test domains. DiCoTTA achieved state-of-the-art performance on four public CTTA benchmarks. Moreover, it showed superior generalization to unseen test domains.
Abstract:Deep classifiers are known to be sensitive to data distribution shifts, primarily due to their reliance on spurious correlations in training data. It has been suggested that these classifiers can still find useful features in the network's last layer that hold up under such shifts. In this work, we question the use of last-layer representations for out-of-distribution (OOD) generalisation and explore the utility of intermediate layers. To this end, we introduce \textit{Intermediate Layer Classifiers} (ILCs). We discover that intermediate layer representations frequently offer substantially better generalisation than those from the penultimate layer. In many cases, zero-shot OOD generalisation using earlier-layer representations approaches the few-shot performance of retraining on penultimate layer representations. This is confirmed across multiple datasets, architectures, and types of distribution shifts. Our analysis suggests that intermediate layers are less sensitive to distribution shifts compared to the penultimate layer. These findings highlight the importance of understanding how information is distributed across network layers and its role in OOD generalisation, while also pointing to the limits of penultimate layer representation utility. Code is available at https://github.com/oshapio/intermediate-layer-generalization
Abstract:CLIP (Contrastive Language-Image Pretraining) has become a popular choice for various downstream tasks. However, recent studies have questioned its ability to represent compositional concepts effectively. These works suggest that CLIP often acts like a bag-of-words (BoW) model, interpreting images and text as sets of individual concepts without grasping the structural relationships. In particular, CLIP struggles to correctly bind attributes to their corresponding objects when multiple objects are present in an image or text. In this work, we investigate why CLIP exhibits this BoW-like behavior. We find that the correct attribute-object binding information is already present in individual text and image modalities. Instead, the issue lies in the cross-modal alignment, which relies on cosine similarity. To address this, we propose Linear Attribute Binding CLIP or LABCLIP. It applies a linear transformation to text embeddings before computing cosine similarity. This approach significantly improves CLIP's ability to bind attributes to correct objects, thereby enhancing its compositional understanding.
Abstract:Membership inference attacks (MIA) attempt to verify the membership of a given data sample in the training set for a model. MIA has become relevant in recent years, following the rapid development of large language models (LLM). Many are concerned about the usage of copyrighted materials for training them and call for methods for detecting such usage. However, recent research has largely concluded that current MIA methods do not work on LLMs. Even when they seem to work, it is usually because of the ill-designed experimental setup where other shortcut features enable "cheating." In this work, we argue that MIA still works on LLMs, but only when multiple documents are presented for testing. We construct new benchmarks that measure the MIA performances at a continuous scale of data samples, from sentences (n-grams) to a collection of documents (multiple chunks of tokens). To validate the efficacy of current MIA approaches at greater scales, we adapt a recent work on Dataset Inference (DI) for the task of binary membership detection that aggregates paragraph-level MIA features to enable MIA at document and collection of documents level. This baseline achieves the first successful MIA on pre-trained and fine-tuned LLMs.
Abstract:Open-vocabulary segmentation (OVS) has gained attention for its ability to recognize a broader range of classes. However, OVS models show significant performance drops when applied to unseen domains beyond the previous training dataset. Fine-tuning these models on new datasets can improve performance, but often leads to the catastrophic forgetting of previously learned knowledge. To address this issue, we propose a method that allows OVS models to learn information from new domains while preserving prior knowledge. Our approach begins by evaluating the input sample's proximity to multiple domains, using precomputed multivariate normal distributions for each domain. Based on this prediction, we dynamically interpolate between the weights of the pre-trained decoder and the fine-tuned decoders. Extensive experiments demonstrate that this approach allows OVS models to adapt to new domains while maintaining performance on the previous training dataset. The source code is available at https://github.com/dongjunhwang/dwi.
Abstract:While Explainable AI (XAI) aims to make AI understandable and useful to humans, it has been criticised for relying too much on formalism and solutionism, focusing more on mathematical soundness than user needs. We propose an alternative to this bottom-up approach inspired by design thinking: the XAI research community should adopt a top-down, user-focused perspective to ensure user relevance. We illustrate this with a relatively young subfield of XAI, Training Data Attribution (TDA). With the surge in TDA research and growing competition, the field risks repeating the same patterns of solutionism. We conducted a needfinding study with a diverse group of AI practitioners to identify potential user needs related to TDA. Through interviews (N=10) and a systematic survey (N=31), we uncovered new TDA tasks that are currently largely overlooked. We invite the TDA and XAI communities to consider these novel tasks and improve the user relevance of their research outcomes.
Abstract:Training a diverse ensemble of models has several practical applications such as providing candidates for model selection with better out-of-distribution (OOD) generalization, and enabling the detection of OOD samples via Bayesian principles. An existing approach to diverse ensemble training encourages the models to disagree on provided OOD samples. However, the approach is computationally expensive and it requires well-separated ID and OOD examples, such that it has only been demonstrated in small-scale settings. $\textbf{Method.}$ This work presents a method for Scalable Ensemble Diversification (SED) applicable to large-scale settings (e.g. ImageNet) that does not require OOD samples. Instead, SED identifies hard training samples on the fly and encourages the ensemble members to disagree on these. To improve scaling, we show how to avoid the expensive computations in existing methods of exhaustive pairwise disagreements across models. $\textbf{Results.}$ We evaluate the benefits of diversification with experiments on ImageNet. First, for OOD generalization, we observe large benefits from the diversification in multiple settings including output-space (classical) ensembles and weight-space ensembles (model soups). Second, for OOD detection, we turn the diversity of ensemble hypotheses into a novel uncertainty score estimator that surpasses a large number of OOD detection baselines. Code is available here: https://github.com/AlexanderRubinstein/diverse-universe-public.
Abstract:Retrieval-augmented generation (RAG) mitigates many problems of fully parametric language models, such as temporal degradation, hallucinations, and lack of grounding. In RAG, the model's knowledge can be updated from documents provided in context. This leads to cases of conflict between the model's parametric knowledge and the contextual information, where the model may not always update its knowledge. Previous work studied knowledge conflicts by creating synthetic documents that contradict the model's correct parametric answers. We present a framework for studying knowledge conflicts in a realistic setup. We update incorrect parametric knowledge using real conflicting documents. This reflects how knowledge conflicts arise in practice. In this realistic scenario, we find that knowledge updates fail less often than previously reported. In cases where the models still fail to update their answers, we find a parametric bias: the incorrect parametric answer appearing in context makes the knowledge update likelier to fail. These results suggest that the factual parametric knowledge of LLMs can negatively influence their reading abilities and behaviors. Our code is available at https://github.com/kortukov/realistic_knowledge_conflicts/.
Abstract:Entezari et al. (2022) conjectured that neural network solution sets reachable via stochastic gradient descent (SGD) are convex, considering permutation invariances. This means that two independent solutions can be connected by a linear path with low loss, given one of them is appropriately permuted. However, current methods to test this theory often fail to eliminate loss barriers between two independent solutions (Ainsworth et al., 2022; Benzing et al., 2022). In this work, we conjecture that a more relaxed claim holds: the SGD solution set is a star domain that contains a star model that is linearly connected to all the other solutions via paths with low loss values, modulo permutations. We propose the Starlight algorithm that finds a star model of a given learning task. We validate our claim by showing that this star model is linearly connected with other independently found solutions. As an additional benefit of our study, we demonstrate better uncertainty estimates on Bayesian Model Averaging over the obtained star domain. Code is available at https://github.com/aktsonthalia/starlight.