Abstract:Membership inference attacks (MIA) attempt to verify the membership of a given data sample in the training set for a model. MIA has become relevant in recent years, following the rapid development of large language models (LLM). Many are concerned about the usage of copyrighted materials for training them and call for methods for detecting such usage. However, recent research has largely concluded that current MIA methods do not work on LLMs. Even when they seem to work, it is usually because of the ill-designed experimental setup where other shortcut features enable "cheating." In this work, we argue that MIA still works on LLMs, but only when multiple documents are presented for testing. We construct new benchmarks that measure the MIA performances at a continuous scale of data samples, from sentences (n-grams) to a collection of documents (multiple chunks of tokens). To validate the efficacy of current MIA approaches at greater scales, we adapt a recent work on Dataset Inference (DI) for the task of binary membership detection that aggregates paragraph-level MIA features to enable MIA at document and collection of documents level. This baseline achieves the first successful MIA on pre-trained and fine-tuned LLMs.
Abstract:As large language models (LLMs) are increasingly deployed in user-facing applications, building trust and maintaining safety by accurately quantifying a model's confidence in its prediction becomes even more important. However, finding effective ways to calibrate LLMs - especially when the only interface to the models is their generated text - remains a challenge. We propose APRICOT (auxiliary prediction of confidence targets): A method to set confidence targets and train an additional model that predicts an LLM's confidence based on its textual input and output alone. This approach has several advantages: It is conceptually simple, does not require access to the target model beyond its output, does not interfere with the language generation, and has a multitude of potential usages, for instance by verbalizing the predicted confidence or adjusting the given answer based on the confidence. We show how our approach performs competitively in terms of calibration error for white-box and black-box LLMs on closed-book question-answering to detect incorrect LLM answers.
Abstract:Large Language Model (LLM) services and models often come with legal rules on who can use them and how they must use them. Assessing the compliance of the released LLMs is crucial, as these rules protect the interests of the LLM contributor and prevent misuse. In this context, we describe the novel problem of Black-box Identity Verification (BBIV). The goal is to determine whether a third-party application uses a certain LLM through its chat function. We propose a method called Targeted Random Adversarial Prompt (TRAP) that identifies the specific LLM in use. We repurpose adversarial suffixes, originally proposed for jailbreaking, to get a pre-defined answer from the target LLM, while other models give random answers. TRAP detects the target LLMs with over 95% true positive rate at under 0.2% false positive rate even after a single interaction. TRAP remains effective even if the LLM has minor changes that do not significantly alter the original function.
Abstract:The rapid advancement and widespread use of large language models (LLMs) have raised significant concerns regarding the potential leakage of personally identifiable information (PII). These models are often trained on vast quantities of web-collected data, which may inadvertently include sensitive personal data. This paper presents ProPILE, a novel probing tool designed to empower data subjects, or the owners of the PII, with awareness of potential PII leakage in LLM-based services. ProPILE lets data subjects formulate prompts based on their own PII to evaluate the level of privacy intrusion in LLMs. We demonstrate its application on the OPT-1.3B model trained on the publicly available Pile dataset. We show how hypothetical data subjects may assess the likelihood of their PII being included in the Pile dataset being revealed. ProPILE can also be leveraged by LLM service providers to effectively evaluate their own levels of PII leakage with more powerful prompts specifically tuned for their in-house models. This tool represents a pioneering step towards empowering the data subjects for their awareness and control over their own data on the web.
Abstract:Transferability is the property of adversarial examples to be misclassified by other models than the surrogate model for which they were crafted. Previous research has shown that transferability is substantially increased when the training of the surrogate model has been early stopped. A common hypothesis to explain this is that the later training epochs are when models learn the non-robust features that adversarial attacks exploit. Hence, an early stopped model is more robust (hence, a better surrogate) than fully trained models. We demonstrate that the reasons why early stopping improves transferability lie in the side effects it has on the learning dynamics of the model. We first show that early stopping benefits transferability even on models learning from data with non-robust features. We then establish links between transferability and the exploration of the loss landscape in the parameter space, on which early stopping has an inherent effect. More precisely, we observe that transferability peaks when the learning rate decays, which is also the time at which the sharpness of the loss significantly drops. This leads us to propose RFN, a new approach for transferability that minimizes loss sharpness during training in order to maximize transferability. We show that by searching for large flat neighborhoods, RFN always improves over early stopping (by up to 47 points of transferability rate) and is competitive to (if not better than) strong state-of-the-art baselines.
Abstract:We propose transferability from Large Geometric Vicinity (LGV), a new technique to increase the transferability of black-box adversarial attacks. LGV starts from a pretrained surrogate model and collects multiple weight sets from a few additional training epochs with a constant and high learning rate. LGV exploits two geometric properties that we relate to transferability. First, models that belong to a wider weight optimum are better surrogates. Second, we identify a subspace able to generate an effective surrogate ensemble among this wider optimum. Through extensive experiments, we show that LGV alone outperforms all (combinations of) four established test-time transformations by 1.8 to 59.9 percentage points. Our findings shed new light on the importance of the geometry of the weight space to explain the transferability of adversarial examples.
Abstract:Semi-Supervised Learning (SSL) aims to maximize the benefits of learning from a limited amount of labelled data together with a vast amount of unlabelled data. Because they rely on the known labels to infer the unknown labels, SSL algorithms are sensitive to data quality. This makes it important to study the potential threats related to the labelled data, more specifically, label poisoning. However, data poisoning of SSL remains largely understudied. To fill this gap, we propose a novel data poisoning method which is both effective and efficient. Our method exploits mathematical properties of SSL to approximate the influence of labelled inputs onto unlabelled one, which allows the identification of the inputs that, if poisoned, would produce the highest number of incorrectly inferred labels. We evaluate our approach on three classification problems under 12 different experimental settings each. Compared to the state of the art, our influence-based attack produces an average increase of error rate 3 times higher, while being faster by multiple orders of magnitude. Moreover, our method can inform engineers of inputs that deserve investigation (relabelling them) before training the learning model. We show that relabelling one-third of the poisoned inputs (selected based on their influence) reduces the poisoning effect by 50%.
Abstract:Deep neural networks are vulnerable to evasion attacks, i.e., carefully crafted examples designed to fool a model at test time. Attacks that successfully evade an ensemble of models can transfer to other independently trained models, which proves useful in black-box settings. Unfortunately, these methods involve heavy computation costs to train the models forming the ensemble. To overcome this, we propose a new method to generate transferable adversarial examples efficiently. Inspired by Bayesian deep learning, our method builds such ensembles by sampling from the posterior distribution of neural network weights during a single training process. Experiments on CIFAR-10 show that our approach improves the transfer rates significantly at equal or even lower computation costs. Intra-architecture transfer rate is increased by 23% compared to classical ensemble-based attacks, while requiring 4 times less training epochs. In the inter-architecture case, we show that we can combine our method with ensemble-based attacks to increase their transfer rate by up to 15% with constant training computational cost.
Abstract:Machine Learning models have been shown to be vulnerable to adversarial examples, ie. the manipulation of data by a attacker to defeat a defender's classifier at test time. We present a novel probabilistic definition of adversarial examples in perfect or limited knowledge setting using prior probability distributions on the defender's classifier. Using the asymptotic properties of the logistic regression, we derive a closed-form expression of the intensity of any adversarial perturbation, in order to achieve a given expected misclassification rate. This technique is relevant in a threat model of known model specifications and unknown training data. To our knowledge, this is the first method that allows an attacker to directly choose the probability of attack success. We evaluate our approach on two real-world datasets.