Abstract:Gross domestic product (GDP) nowcasting is crucial for policy-making as GDP growth is a key indicator of economic conditions. Dynamic factor models (DFMs) have been widely adopted by government agencies for GDP nowcasting due to their ability to handle irregular or missing macroeconomic indicators and their interpretability. However, DFMs face two main challenges: i) the lack of capturing economic uncertainties such as sudden recessions or booms, and ii) the limitation of capturing irregular dynamics from mixed-frequency data. To address these challenges, we introduce NCDENow, a novel GDP nowcasting framework that integrates neural controlled differential equations (NCDEs) with DFMs. This integration effectively handles the dynamics of irregular time series. NCDENow consists of 3 main modules: i) factor extraction leveraging DFM, ii) dynamic modeling using NCDE, and iii) GDP growth prediction through regression. We evaluate NCDENow against 6 baselines on 2 real-world GDP datasets from South Korea and the United Kingdom, demonstrating its enhanced predictive capability. Our empirical results favor our method, highlighting the significant potential of integrating NCDE into nowcasting models. Our code and dataset are available at https://github.com/sklim84/NCDENow_CIKM2024.
Abstract:Cross-domain recommendation (CDR) extends conventional recommender systems by leveraging user-item interactions from dense domains to mitigate data sparsity and the cold start problem. While CDR offers substantial potential for enhancing recommendation performance, most existing CDR methods suffer from sensitivity to the ratio of overlapping users and intrinsic discrepancy between source and target domains. To overcome these limitations, in this work, we explore the application of graph signal processing (GSP) in CDR scenarios. We propose CGSP, a unified CDR framework based on GSP, which employs a cross-domain similarity graph constructed by flexibly combining target-only similarity and source-bridged similarity. By processing personalized graph signals computed for users from either the source or target domain, our framework effectively supports both inter-domain and intra-domain recommendations. Our empirical evaluation demonstrates that CGSP consistently outperforms various encoder-based CDR approaches in both intra-domain and inter-domain recommendation scenarios, especially when the ratio of overlapping users is low, highlighting its significant practical implication in real-world applications.
Abstract:Recent research in the field of graph neural network (GNN) has identified a critical issue known as "over-squashing," resulting from the bottleneck phenomenon in graph structures, which impedes the propagation of long-range information. Prior works have proposed a variety of graph rewiring concepts that aim at optimizing the spatial or spectral properties of graphs to promote the signal propagation. However, such approaches inevitably deteriorate the original graph topology, which may lead to a distortion of information flow. To address this, we introduce an expanded width-aware (PANDA) message passing, a new message passing paradigm where nodes with high centrality, a potential source of over-squashing, are selectively expanded in width to encapsulate the growing influx of signals from distant nodes. Experimental results show that our method outperforms existing rewiring methods, suggesting that selectively expanding the hidden state of nodes can be a compelling alternative to graph rewiring for addressing the over-squashing.
Abstract:Collaborative filtering (CF) methods for recommendation systems have been extensively researched, ranging from matrix factorization and autoencoder-based to graph filtering-based methods. Recently, lightweight methods that require almost no training have been recently proposed to reduce overall computation. However, existing methods still have room to improve the trade-offs among accuracy, efficiency, and robustness. In particular, there are no well-designed closed-form studies for \emph{balanced} CF in terms of the aforementioned trade-offs. In this paper, we design SVD-AE, a simple yet effective singular vector decomposition (SVD)-based linear autoencoder, whose closed-form solution can be defined based on SVD for CF. SVD-AE does not require iterative training processes as its closed-form solution can be calculated at once. Furthermore, given the noisy nature of the rating matrix, we explore the robustness against such noisy interactions of existing CF methods and our SVD-AE. As a result, we demonstrate that our simple design choice based on truncated SVD can be used to strengthen the noise robustness of the recommendation while improving efficiency. Code is available at https://github.com/seoyoungh/svd-ae.
Abstract:Graph-based collaborative filtering (CF) has emerged as a promising approach in recommendation systems. Despite its achievements, graph-based CF models face challenges due to data sparsity and negative sampling. In this paper, we propose a novel Stochastic sampling for i) COntrastive views and ii) hard NEgative samples (SCONE) to overcome these issues. By considering that they are both sampling tasks, we generate dynamic augmented views and diverse hard negative samples via our unified stochastic sampling framework based on score-based generative models. In our comprehensive evaluations with 6 benchmark datasets, our proposed SCONE significantly improves recommendation accuracy and robustness, and demonstrates the superiority of our approach over existing CF models. Furthermore, we prove the efficacy of user-item specific stochastic sampling for addressing the user sparsity and item popularity issues. The integration of the stochastic sampling and graph-based CF obtains the state-of-the-art in personalized recommendation systems, making significant strides in information-rich environments.
Abstract:With the rapid growth of cloud services driven by advancements in web service technology, selecting a high-quality service from a wide range of options has become a complex task. This study aims to address the challenges of data sparsity and the cold-start problem in web service recommendation using Quality of Service (QoS). We propose a novel approach called QoS-aware graph contrastive learning (QAGCL) for web service recommendation. Our model harnesses the power of graph contrastive learning to handle cold-start problems and improve recommendation accuracy effectively. By constructing contextually augmented graphs with geolocation information and randomness, our model provides diverse views. Through the use of graph convolutional networks and graph contrastive learning techniques, we learn user and service embeddings from these augmented graphs. The learned embeddings are then utilized to seamlessly integrate QoS considerations into the recommendation process. Experimental results demonstrate the superiority of our QAGCL model over several existing models, highlighting its effectiveness in addressing data sparsity and the cold-start problem in QoS-aware service recommendations. Our research contributes to the potential for more accurate recommendations in real-world scenarios, even with limited user-service interaction data.
Abstract:Contrastive learning (CL) has emerged as a promising technique for improving recommender systems, addressing the challenge of data sparsity by leveraging self-supervised signals from raw data. Integration of CL with graph convolutional network (GCN)-based collaborative filterings (CFs) has been explored in recommender systems. However, current CL-based recommendation models heavily rely on low-pass filters and graph augmentations. In this paper, we propose a novel CL method for recommender systems called the reaction-diffusion graph contrastive learning model (RDGCL). We design our own GCN for CF based on both the diffusion, i.e., low-pass filter, and the reaction, i.e., high-pass filter, equations. Our proposed CL-based training occurs between reaction and diffusion-based embeddings, so there is no need for graph augmentations. Experimental evaluation on 6 benchmark datasets demonstrates that our proposed method outperforms state-of-the-art CL-based recommendation models. By enhancing recommendation accuracy and diversity, our method brings an advancement in CL for recommender systems.
Abstract:Recently, many mesh-based graph neural network (GNN) models have been proposed for modeling complex high-dimensional physical systems. Remarkable achievements have been made in significantly reducing the solving time compared to traditional numerical solvers. These methods are typically designed to i) reduce the computational cost in solving physical dynamics and/or ii) propose techniques to enhance the solution accuracy in fluid and rigid body dynamics. However, it remains under-explored whether they are effective in addressing the challenges of flexible body dynamics, where instantaneous collisions occur within a very short timeframe. In this paper, we present Hierarchical Contact Mesh Transformer (HCMT), which uses hierarchical mesh structures and can learn long-range dependencies (occurred by collisions) among spatially distant positions of a body -- two close positions in a higher-level mesh corresponds to two distant positions in a lower-level mesh. HCMT enables long-range interactions, and the hierarchical mesh structure quickly propagates collision effects to faraway positions. To this end, it consists of a contact mesh Transformer and a hierarchical mesh Transformer (CMT and HMT, respectively). Lastly, we propose a flexible body dynamics dataset, consisting of trajectories that reflect experimental settings frequently used in the display industry for product designs. We also compare the performance of several baselines using well-known benchmark datasets. Our results show that HCMT provides significant performance improvements over existing methods.
Abstract:Structured data, which constitutes a significant portion of existing data types, has been a long-standing research topic in the field of machine learning. Various representation learning methods for tabular data have been proposed, ranging from encoder-decoder structures to Transformers. Among these, Transformer-based methods have achieved state-of-the-art performance not only in tabular data but also in various other fields, including computer vision and natural language processing. However, recent studies have revealed that self-attention, a key component of Transformers, can lead to an oversmoothing issue. We show that Transformers for tabular data also face this problem, and to address the problem, we propose a novel matrix polynomial-based self-attention layer as a substitute for the original self-attention layer, which enhances model scalability. In our experiments with three representative table learning models equipped with our proposed layer, we illustrate that the layer effectively mitigates the oversmoothing problem and enhances the representation performance of the existing methods, outperforming the state-of-the-art table representation methods.
Abstract:Sequential recommendation (SR) models based on Transformers have achieved remarkable successes. The self-attention mechanism of Transformers for computer vision and natural language processing suffers from the oversmoothing problem, i.e., hidden representations becoming similar to tokens. In the SR domain, we, for the first time, show that the same problem occurs. We present pioneering investigations that reveal the low-pass filtering nature of self-attention in the SR, which causes oversmoothing. To this end, we propose a novel method called Beyond Self-Attention for Sequential Recommendation (BSARec), which leverages the Fourier transform to i) inject an inductive bias by considering fine-grained sequential patterns and ii) integrate low and high-frequency information to mitigate oversmoothing. Our discovery shows significant advancements in the SR domain and is expected to bridge the gap for existing Transformer-based SR models. We test our proposed approach through extensive experiments on 6 benchmark datasets. The experimental results demonstrate that our model outperforms 7 baseline methods in terms of recommendation performance.