Abstract:Object detection is one of the key target tasks of interest in the context of civil and military applications. In particular, the real-world deployment of target detection methods is pivotal in the decision-making process during military command and reconnaissance. However, current domain adaptive object detection algorithms consider adapting one domain to another similar one only within the scope of natural or autonomous driving scenes. Since military domains often deal with a mixed variety of environments, detecting objects from multiple varying target domains poses a greater challenge. Several studies for armored military target detection have made use of synthetic aperture radar (SAR) data due to its robustness to all weather, long range, and high-resolution characteristics. Nevertheless, the costs of SAR data acquisition and processing are still much higher than those of the conventional RGB camera, which is a more affordable alternative with significantly lower data processing time. Furthermore, the lack of military target detection datasets limits the use of such a low-cost approach. To mitigate these issues, we propose to generate RGB-based synthetic data using a photorealistic visual tool, Unreal Engine, for military target detection in a cross-domain setting. To this end, we conducted synthetic-to-real transfer experiments by training our synthetic dataset and validating on our web-collected real military target datasets. We benchmark the state-of-the-art domain adaptation methods distinguished by the degree of supervision on our proposed train-val dataset pair, and find that current methods using minimal hints on the image (e.g., object class) achieve a substantial improvement over unsupervised or semi-supervised DA methods. From these observations, we recognize the current challenges that remain to be overcome.
Abstract:Cross-domain recommendation (CDR) extends conventional recommender systems by leveraging user-item interactions from dense domains to mitigate data sparsity and the cold start problem. While CDR offers substantial potential for enhancing recommendation performance, most existing CDR methods suffer from sensitivity to the ratio of overlapping users and intrinsic discrepancy between source and target domains. To overcome these limitations, in this work, we explore the application of graph signal processing (GSP) in CDR scenarios. We propose CGSP, a unified CDR framework based on GSP, which employs a cross-domain similarity graph constructed by flexibly combining target-only similarity and source-bridged similarity. By processing personalized graph signals computed for users from either the source or target domain, our framework effectively supports both inter-domain and intra-domain recommendations. Our empirical evaluation demonstrates that CGSP consistently outperforms various encoder-based CDR approaches in both intra-domain and inter-domain recommendation scenarios, especially when the ratio of overlapping users is low, highlighting its significant practical implication in real-world applications.




Abstract:Mitigating hallucination issues is one of the main challenges of LLMs we need to overcome, in order to reliably use them in real-world scenarios. Recently, various methods are proposed to check the factual errors in the LLM-generated texts and revise them accordingly, to reduce the hallucination issue. In this paper, we propose Re-Ex, a method of revising LLM-generated texts, which introduces a novel step dubbed as the factual error explanation step. Re-Ex revises the initial response of LLMs using 3-steps: first, external tools are used to get the evidences on the factual errors in the response; second, LLMs are instructed to explain the problematic parts of the response based on the evidences gathered in the first step; finally, LLMs revise the response using the explanation obtained in the second step. In addition to the explanation step, we propose new prompting techniques to reduce the amount of tokens and wall-clock time required for the response revision process. Compared with existing methods including Factool, CoVE, and RARR, Re-Ex provides better revision performance with less time and fewer tokens in multiple benchmarks.