Abstract:Background: Large language models (LLMs) have seen extraordinary advances with applications in clinical decision support. However, high-quality evidence is urgently needed on the potential and limitation of LLMs in providing accurate clinical decisions based on real-world medical data. Objective: To evaluate quantitatively whether universal state-of-the-art LLMs (ChatGPT and GPT-4) can predict the incidence risk of myocardial infarction (MI) with logical inference, and to further make comparison between various models to assess the performance of LLMs comprehensively. Methods: In this retrospective cohort study, 482,310 participants recruited from 2006 to 2010 were initially included in UK Biobank database and later on resampled into a final cohort of 690 participants. For each participant, tabular data of the risk factors of MI were transformed into standardized textual descriptions for ChatGPT recognition. Responses were generated by asking ChatGPT to select a score ranging from 0 to 10 representing the risk. Chain of Thought (CoT) questioning was used to evaluate whether LLMs make prediction logically. The predictive performance of ChatGPT was compared with published medical indices, traditional machine learning models and other large language models. Conclusions: Current LLMs are not ready to be applied in clinical medicine fields. Future medical LLMs are suggested to be expert in medical domain knowledge to understand both natural languages and quantified medical data, and further make logical inferences.
Abstract:Learned Image Compression (LIC) models have achieved superior rate-distortion performance than traditional codecs. Existing LIC models use CNN, Transformer, or Mixed CNN-Transformer as basic blocks. However, limited by the shifted window attention, Swin-Transformer-based LIC exhibits a restricted growth of receptive fields, affecting the ability to model large objects in the image. To address this issue, we incorporate window partition into channel attention for the first time to obtain large receptive fields and capture more global information. Since channel attention hinders local information learning, it is important to extend existing attention mechanisms in Transformer codecs to the space-channel attention to establish multiple receptive fields, being able to capture global correlations with large receptive fields while maintaining detailed characterization of local correlations with small receptive fields. We also incorporate the discrete wavelet transform into our Spatial-Channel Hybrid (SCH) framework for efficient frequency-dependent down-sampling and further enlarging receptive fields. Experiment results demonstrate that our method achieves state-of-the-art performances, reducing BD-rate by 18.54%, 23.98%, 22.33%, and 24.71% on four standard datasets compared to VTM-23.1.
Abstract:Federated learning is a promising privacy-preserving paradigm for distributed machine learning. In this context, there is sometimes a need for a specialized process called machine unlearning, which is required when the effect of some specific training samples needs to be removed from a learning model due to privacy, security, usability, and/or legislative factors. However, problems arise when current centralized unlearning methods are applied to existing federated learning, in which the server aims to remove all information about a class from the global model. Centralized unlearning usually focuses on simple models or is premised on the ability to access all training data at a central node. However, training data cannot be accessed on the server under the federated learning paradigm, conflicting with the requirements of the centralized unlearning process. Additionally, there are high computation and communication costs associated with accessing clients' data, especially in scenarios involving numerous clients or complex global models. To address these concerns, we propose a more effective and efficient federated unlearning scheme based on the concept of model explanation. Model explanation involves understanding deep networks and individual channel importance, so that this understanding can be used to determine which model channels are critical for classes that need to be unlearned. We select the most influential channels within an already-trained model for the data that need to be unlearned and fine-tune only influential channels to remove the contribution made by those data. In this way, we can simultaneously avoid huge consumption costs and ensure that the unlearned model maintains good performance. Experiments with different training models on various datasets demonstrate the effectiveness of the proposed approach.
Abstract:Machine unlearning is an emerging technology that has come to attract widespread attention. A number of factors, including regulations and laws, privacy, and usability concerns, have resulted in this need to allow a trained model to forget some of its training data. Existing studies of machine unlearning mainly focus on unlearning requests that forget a cluster of instances or all instances from one class. While these approaches are effective in removing instances, they do not scale to scenarios where partial targets within an instance need to be forgotten. For example, one would like to only unlearn a person from all instances that simultaneously contain the person and other targets. Directly migrating instance-level unlearning to target-level unlearning will reduce the performance of the model after the unlearning process, or fail to erase information completely. To address these concerns, we have proposed a more effective and efficient unlearning scheme that focuses on removing partial targets from the model, which we name "target unlearning". Specifically, we first construct an essential graph data structure to describe the relationships between all important parameters that are selected based on the model explanation method. After that, we simultaneously filter parameters that are also important for the remaining targets and use the pruning-based unlearning method, which is a simple but effective solution to remove information about the target that needs to be forgotten. Experiments with different training models on various datasets demonstrate the effectiveness of the proposed approach.
Abstract:In current AI era, users may request AI companies to delete their data from the training dataset due to the privacy concerns. As a model owner, retraining a model will consume significant computational resources. Therefore, machine unlearning is a new emerged technology to allow model owner to delete requested training data or a class with little affecting on the model performance. However, for large-scaling complex data, such as image or text data, unlearning a class from a model leads to a inferior performance due to the difficulty to identify the link between classes and model. An inaccurate class deleting may lead to over or under unlearning. In this paper, to accurately defining the unlearning class of complex data, we apply the definition of Concept, rather than an image feature or a token of text data, to represent the semantic information of unlearning class. This new representation can cut the link between the model and the class, leading to a complete erasing of the impact of a class. To analyze the impact of the concept of complex data, we adopt a Post-hoc Concept Bottleneck Model, and Integrated Gradients to precisely identify concepts across different classes. Next, we take advantage of data poisoning with random and targeted labels to propose unlearning methods. We test our methods on both image classification models and large language models (LLMs). The results consistently show that the proposed methods can accurately erase targeted information from models and can largely maintain the performance of the models.
Abstract:Machine learning has attracted widespread attention and evolved into an enabling technology for a wide range of highly successful applications, such as intelligent computer vision, speech recognition, medical diagnosis, and more. Yet a special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning. This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality. At the same time, this ambitious problem has led to numerous research efforts aimed at confronting its challenges. To the best of our knowledge, no study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios. Accordingly, with this survey, we aim to capture the key concepts of unlearning techniques. The existing solutions are classified and summarized based on their characteristics within an up-to-date and comprehensive review of each category's advantages and limitations. The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
Abstract:Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. We take inspiration from the biological plausibility learning where the neuron responses are tuned based on a local synapse-change procedure and activated by competitive lateral inhibition rules. Based on these feed-forward learning rules, we design a soft Hebbian learning process which provides an unsupervised and effective mechanism for online adaptation. We observe that the performance of this feed-forward Hebbian learning for fully test-time adaptation can be significantly improved by incorporating a feedback neuro-modulation layer. It is able to fine-tune the neuron responses based on the external feedback generated by the error back-propagation from the top inference layers. This leads to our proposed neuro-modulated Hebbian learning (NHL) method for fully test-time adaptation. With the unsupervised feed-forward soft Hebbian learning being combined with a learned neuro-modulator to capture feedback from external responses, the source model can be effectively adapted during the testing process. Experimental results on benchmark datasets demonstrate that our proposed method can significantly improve the adaptation performance of network models and outperforms existing state-of-the-art methods.
Abstract:We have developed a novel button click rendering mechanism based on active lateral force feedback. The effect can be localized because electroadhesion between a finger and a surface can be localized. Psychophysical experiments were conducted to evaluate the quality of a rendered button click, which subjects judged to be acceptable. Both the experiment results and the subjects' comments confirm that this button click rendering mechanism has the ability to generate a range of realistic button click sensations that could match subjects' different preferences. We can thus generate a button click on a flat surface without macroscopic motion of the surface in the lateral or normal direction, and we can localize this haptic effect to an individual finger. This mechanism is promising for touch-typing keyboard rendering.
Abstract:One well-known class of surface haptic devices that we have called TPaDs (Tactile Pattern Displays) uses ultrasonic transverse vibrations of a touch surface to modulate fingertip friction. This paper addresses the power consumption of glass TPaDs, which is an important consideration in the context of mobile touchscreens. In particular, based on existing ultrasonic friction reduction models, we consider how the mechanical properties (density and Young's modulus) and thickness of commonly-used glass formulations affect TPaD performance, namely the relation between friction reduction ability and real power consumption. Experiments performed with eight types of TPaDs and an electromechanical model for the fingertip-TPaD system indicate: 1) TPaD performance decreases as glass thickness increases; 2) TPaD performance increases as the Young's modulus and density of glass decrease; 3) counterintuitively, real power consumption of a TPaD decreases as the contact force increases. Proper applications of these results can lead to significant increases in TPaD performance.