Abstract:Background: Large language models (LLMs) have seen extraordinary advances with applications in clinical decision support. However, high-quality evidence is urgently needed on the potential and limitation of LLMs in providing accurate clinical decisions based on real-world medical data. Objective: To evaluate quantitatively whether universal state-of-the-art LLMs (ChatGPT and GPT-4) can predict the incidence risk of myocardial infarction (MI) with logical inference, and to further make comparison between various models to assess the performance of LLMs comprehensively. Methods: In this retrospective cohort study, 482,310 participants recruited from 2006 to 2010 were initially included in UK Biobank database and later on resampled into a final cohort of 690 participants. For each participant, tabular data of the risk factors of MI were transformed into standardized textual descriptions for ChatGPT recognition. Responses were generated by asking ChatGPT to select a score ranging from 0 to 10 representing the risk. Chain of Thought (CoT) questioning was used to evaluate whether LLMs make prediction logically. The predictive performance of ChatGPT was compared with published medical indices, traditional machine learning models and other large language models. Conclusions: Current LLMs are not ready to be applied in clinical medicine fields. Future medical LLMs are suggested to be expert in medical domain knowledge to understand both natural languages and quantified medical data, and further make logical inferences.