Abstract:Recent approaches have utilized self-supervised auxiliary tasks as representation learning to improve the performance and sample efficiency of vision-based reinforcement learning algorithms in single-agent settings. However, in multi-agent reinforcement learning (MARL), these techniques face challenges because each agent only receives partial observation from an environment influenced by others, resulting in correlated observations in the agent dimension. So it is necessary to consider agent-level information in representation learning for MARL. In this paper, we propose an effective framework called \textbf{M}ulti-\textbf{A}gent \textbf{M}asked \textbf{A}ttentive \textbf{C}ontrastive \textbf{L}earning (MA2CL), which encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space. Specifically, we use an attention reconstruction model for recovering and the model is trained via contrastive learning. MA2CL allows better utilization of contextual information at the agent level, facilitating the training of MARL agents for cooperation tasks. Extensive experiments demonstrate that our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios. Our code can be found in \url{https://github.com/ustchlsong/MA2CL}
Abstract:Controllable Text Generation (CTG) is emerging area in the field of natural language generation (NLG). It is regarded as crucial for the development of advanced text generation technologies that are more natural and better meet the specific constraints in practical applications. In recent years, methods using large-scale pre-trained language models (PLMs), in particular the widely used transformer-based PLMs, have become a new paradigm of NLG, allowing generation of more diverse and fluent text. However, due to the lower level of interpretability of deep neural networks, the controllability of these methods need to be guaranteed. To this end, controllable text generation using transformer-based PLMs has become a rapidly growing yet challenging new research hotspot. A diverse range of approaches have emerged in the recent 3-4 years, targeting different CTG tasks which may require different types of controlled constraints. In this paper, we present a systematic critical review on the common tasks, main approaches and evaluation methods in this area. Finally, we discuss the challenges that the field is facing, and put forward various promising future directions. To the best of our knowledge, this is the first survey paper to summarize CTG techniques from the perspective of PLMs. We hope it can help researchers in related fields to quickly track the academic frontier, providing them with a landscape of the area and a roadmap for future research.
Abstract:Emotion-cause pair extraction (ECPE), as an emergent natural language processing task, aims at jointly investigating emotions and their underlying causes in documents. It extends the previous emotion cause extraction (ECE) task, yet without requiring a set of pre-given emotion clauses as in ECE. Existing approaches to ECPE generally adopt a two-stage method, i.e., (1) emotion and cause detection, and then (2) pairing the detected emotions and causes. Such pipeline method, while intuitive, suffers from two critical issues, including error propagation across stages that may hinder the effectiveness, and high computational cost that would limit the practical application of the method. To tackle these issues, we propose a multi-task learning model that can extract emotions, causes and emotion-cause pairs simultaneously in an end-to-end manner. Specifically, our model regards pair extraction as a link prediction task, and learns to link from emotion clauses to cause clauses, i.e., the links are directional. Emotion extraction and cause extraction are incorporated into the model as auxiliary tasks, which further boost the pair extraction. Experiments are conducted on an ECPE benchmarking dataset. The results show that our proposed model outperforms a range of state-of-the-art approaches in terms of both effectiveness and efficiency.