Abstract:Frames Per Second (FPS) significantly affects the gaming experience. Providing players with accurate FPS estimates prior to purchase benefits both players and game developers. However, we have a limited understanding of how to predict a game's FPS performance on a specific device. In this paper, we first conduct a comprehensive analysis of a wide range of factors that may affect game FPS on a global-scale dataset to identify the determinants of FPS. This includes player-side and game-side characteristics, as well as country-level socio-economic statistics. Furthermore, recognizing that accurate FPS predictions require extensive user data, which raises privacy concerns, we propose a federated learning-based model to ensure user privacy. Each player and game is assigned a unique learnable knowledge kernel that gradually extracts latent features for improved accuracy. We also introduce a novel training and prediction scheme that allows these kernels to be dynamically plug-and-play, effectively addressing cold start issues. To train this model with minimal bias, we collected a large telemetry dataset from 224 countries and regions, 100,000 users, and 835 games. Our model achieved a mean Wasserstein distance of 0.469 between predicted and ground truth FPS distributions, outperforming all baseline methods.
Abstract:Evaluating the reasoning abilities of large language models (LLMs) is challenging. Existing benchmarks often depend on static datasets, which are vulnerable to data contamination and may get saturated over time, or on binary live human feedback that conflates reasoning with other abilities. As the most prominent dynamic benchmark, Chatbot Arena evaluates open-ended questions in real-world settings, but lacks the granularity in assessing specific reasoning capabilities. We introduce GameArena, a dynamic benchmark designed to evaluate LLM reasoning capabilities through interactive gameplay with humans. GameArena consists of three games designed to test specific reasoning capabilities (e.g., deductive and inductive reasoning), while keeping participants entertained and engaged. We analyze the gaming data retrospectively to uncover the underlying reasoning processes of LLMs and measure their fine-grained reasoning capabilities. We collect over 2000 game sessions and provide detailed assessments of various reasoning capabilities for five state-of-the-art LLMs. Our user study with 100 participants suggests that GameArena improves user engagement compared to Chatbot Arena. For the first time, GameArena enables the collection of step-by-step LLM reasoning data in the wild.
Abstract:Video consumption is being shifted from sit-and-watch to selective skimming. Existing video player interfaces, however, only provide indirect manipulation to support this emerging behavior. Video summarization alleviates this issue to some extent, shortening a video based on the desired length of a summary as an input variable. But an optimal length of a summarized video is often not available in advance. Moreover, the user cannot edit the summary once it is produced, limiting its practical applications. We argue that video summarization should be an interactive, mixed-initiative process in which users have control over the summarization procedure while algorithms help users achieve their goal via video understanding. In this paper, we introduce ElasticPlay, a mixed-initiative approach that combines an advanced video summarization technique with direct interface manipulation to help users control the video summarization process. Users can specify a time budget for the remaining content while watching a video; our system then immediately updates the playback plan using our proposed cut-and-forward algorithm, determining which parts to skip or to fast-forward. This interactive process allows users to fine-tune the summarization result with immediate feedback. We show that our system outperforms existing video summarization techniques on the TVSum50 dataset. We also report two lab studies (22 participants) and a Mechanical Turk deployment study (60 participants), and show that the participants responded favorably to ElasticPlay.