Abstract:We propose Scalable Message Passing Neural Networks (SMPNNs) and demonstrate that, by integrating standard convolutional message passing into a Pre-Layer Normalization Transformer-style block instead of attention, we can produce high-performing deep message-passing-based Graph Neural Networks (GNNs). This modification yields results competitive with the state-of-the-art in large graph transductive learning, particularly outperforming the best Graph Transformers in the literature, without requiring the otherwise computationally and memory-expensive attention mechanism. Our architecture not only scales to large graphs but also makes it possible to construct deep message-passing networks, unlike simple GNNs, which have traditionally been constrained to shallow architectures due to oversmoothing. Moreover, we provide a new theoretical analysis of oversmoothing based on universal approximation which we use to motivate SMPNNs. We show that in the context of graph convolutions, residual connections are necessary for maintaining the universal approximation properties of downstream learners and that removing them can lead to a loss of universality.
Abstract:We propose a class of trainable deep learning-based geometries called Neural Spacetimes (NSTs), which can universally represent nodes in weighted directed acyclic graphs (DAGs) as events in a spacetime manifold. While most works in the literature focus on undirected graph representation learning or causality embedding separately, our differentiable geometry can encode both graph edge weights in its spatial dimensions and causality in the form of edge directionality in its temporal dimensions. We use a product manifold that combines a quasi-metric (for space) and a partial order (for time). NSTs are implemented as three neural networks trained in an end-to-end manner: an embedding network, which learns to optimize the location of nodes as events in the spacetime manifold, and two other networks that optimize the space and time geometries in parallel, which we call a neural (quasi-)metric and a neural partial order, respectively. The latter two networks leverage recent ideas at the intersection of fractal geometry and deep learning to shape the geometry of the representation space in a data-driven fashion, unlike other works in the literature that use fixed spacetime manifolds such as Minkowski space or De Sitter space to embed DAGs. Our main theoretical guarantee is a universal embedding theorem, showing that any $k$-point DAG can be embedded into an NST with $1+\mathcal{O}(\log(k))$ distortion while exactly preserving its causal structure. The total number of parameters defining the NST is sub-cubic in $k$ and linear in the width of the DAG. If the DAG has a planar Hasse diagram, this is improved to $\mathcal{O}(\log(k)) + 2)$ spatial and 2 temporal dimensions. We validate our framework computationally with synthetic weighted DAGs and real-world network embeddings; in both cases, the NSTs achieve lower embedding distortions than their counterparts using fixed spacetime geometries.
Abstract:Clifford Group Equivariant Neural Networks (CGENNs) leverage Clifford algebras and multivectors as an alternative approach to incorporating group equivariance to ensure symmetry constraints in neural representations. In principle, this formulation generalizes to orthogonal groups and preserves equivariance regardless of the metric signature. However, previous works have restricted internal network representations to Euclidean or Minkowski (pseudo-)metrics, handpicked depending on the problem at hand. In this work, we propose an alternative method that enables the metric to be learned in a data-driven fashion, allowing the CGENN network to learn more flexible representations. Specifically, we populate metric matrices fully, ensuring they are symmetric by construction, and leverage eigenvalue decomposition to integrate this additional learnable component into the original CGENN formulation in a principled manner. Additionally, we motivate our method using insights from category theory, which enables us to explain Clifford algebras as a categorical construction and guarantee the mathematical soundness of our approach. We validate our method in various tasks and showcase the advantages of learning more flexible latent metric representations. The code and data are available at https://github.com/rick-ali/Metric-Learning-for-CGENNs
Abstract:While 2D diffusion models generate realistic, high-detail images, 3D shape generation methods like Score Distillation Sampling (SDS) built on these 2D diffusion models produce cartoon-like, over-smoothed shapes. To help explain this discrepancy, we show that the image guidance used in Score Distillation can be understood as the velocity field of a 2D denoising generative process, up to the choice of a noise term. In particular, after a change of variables, SDS resembles a high-variance version of Denoising Diffusion Implicit Models (DDIM) with a differently-sampled noise term: SDS introduces noise i.i.d. randomly at each step, while DDIM infers it from the previous noise predictions. This excessive variance can lead to over-smoothing and unrealistic outputs. We show that a better noise approximation can be recovered by inverting DDIM in each SDS update step. This modification makes SDS's generative process for 2D images almost identical to DDIM. In 3D, it removes over-smoothing, preserves higher-frequency detail, and brings the generation quality closer to that of 2D samplers. Experimentally, our method achieves better or similar 3D generation quality compared to other state-of-the-art Score Distillation methods, all without training additional neural networks or multi-view supervision, and providing useful insights into relationship between 2D and 3D asset generation with diffusion models.
Abstract:Parameter-efficient fine-tuning optimizes large, pre-trained foundation models by updating a subset of parameters; in this class, Low-Rank Adaptation (LoRA) is particularly effective. Inspired by an effort to investigate the different roles of LoRA matrices during fine-tuning, this paper characterizes and leverages unexpected asymmetry in the importance of low-rank adapter matrices. Specifically, when updating the parameter matrices of a neural network by adding a product $BA$, we observe that the $B$ and $A$ matrices have distinct functions: $A$ extracts features from the input, while $B$ uses these features to create the desired output. Based on this observation, we demonstrate that fine-tuning $B$ is inherently more effective than fine-tuning $A$, and that a random untrained $A$ should perform nearly as well as a fine-tuned one. Using an information-theoretic lens, we also bound the generalization of low-rank adapters, showing that the parameter savings of exclusively training $B$ improves the bound. We support our conclusions with experiments on RoBERTa, BART-Large, LLaMA-2, and ViTs.
Abstract:3D scene understanding for robotic applications exhibits a unique set of requirements including real-time inference, object-centric latent representation learning, accurate 6D pose estimation and 3D reconstruction of objects. Current methods for scene understanding typically rely on a combination of trained models paired with either an explicit or learnt volumetric representation, all of which have their own drawbacks and limitations. We introduce DreamUp3D, a novel Object-Centric Generative Model (OCGM) designed explicitly to perform inference on a 3D scene informed only by a single RGB-D image. DreamUp3D is a self-supervised model, trained end-to-end, and is capable of segmenting objects, providing 3D object reconstructions, generating object-centric latent representations and accurate per-object 6D pose estimates. We compare DreamUp3D to baselines including NeRFs, pre-trained CLIP-features, ObSurf, and ObPose, in a range of tasks including 3D scene reconstruction, object matching and object pose estimation. Our experiments show that our model outperforms all baselines by a significant margin in real-world scenarios displaying its applicability for 3D scene understanding tasks while meeting the strict demands exhibited in robotics applications.
Abstract:We present a theoretical approach to overcome the curse of dimensionality using a neural computation algorithm which can be distributed across several machines. Our modular distributed deep learning paradigm, termed \textit{neural pathways}, can achieve arbitrary accuracy while only loading a small number of parameters into GPU VRAM. Formally, we prove that for every error level $\varepsilon>0$ and every Lipschitz function $f:[0,1]^n\to \mathbb{R}$, one can construct a neural pathways model which uniformly approximates $f$ to $\varepsilon$ accuracy over $[0,1]^n$ while only requiring networks of $\mathcal{O}(\varepsilon^{-1})$ parameters to be loaded in memory and $\mathcal{O}(\varepsilon^{-1}\log(\varepsilon^{-1}))$ to be loaded during the forward pass. This improves the optimal bounds for traditional non-distributed deep learning models, namely ReLU MLPs, which need $\mathcal{O}(\varepsilon^{-n/2})$ parameters to achieve the same accuracy. The only other available deep learning model that breaks the curse of dimensionality is MLPs with super-expressive activation functions. However, we demonstrate that these models have an infinite VC dimension, even with bounded depth and width restrictions, unlike the neural pathways model. This implies that only the latter generalizes. Our analysis is validated experimentally in both regression and classification tasks, demonstrating that our model exhibits superior performance compared to larger centralized benchmarks.
Abstract:In real-world scenarios, although data entities may possess inherent relationships, the specific graph illustrating their connections might not be directly accessible. Latent graph inference addresses this issue by enabling Graph Neural Networks (GNNs) to operate on point cloud data, dynamically learning the necessary graph structure. These graphs are often derived from a latent embedding space, which can be modeled using Euclidean, hyperbolic, spherical, or product spaces. However, currently, there is no principled differentiable method for determining the optimal embedding space. In this work, we introduce the Attentional Multi-Embedding Selection (AMES) framework, a differentiable method for selecting the best embedding space for latent graph inference through backpropagation, considering a downstream task. Our framework consistently achieves comparable or superior results compared to previous methods for latent graph inference across five benchmark datasets. Importantly, our approach eliminates the need for conducting multiple experiments to identify the optimal embedding space. Furthermore, we explore interpretability techniques that track the gradient contributions of different latent graphs, shedding light on how our attention-based, fully differentiable approach learns to choose the appropriate latent space. In line with previous works, our experiments emphasize the advantages of hyperbolic spaces in enhancing performance. More importantly, our interpretability framework provides a general approach for quantitatively comparing embedding spaces across different tasks based on their contributions, a dimension that has been overlooked in previous literature on latent graph inference.
Abstract:The inductive bias of a graph neural network (GNN) is largely encoded in its specified graph. Latent graph inference relies on latent geometric representations to dynamically rewire or infer a GNN's graph to maximize the GNN's predictive downstream performance, but it lacks solid theoretical foundations in terms of embedding-based representation guarantees. This paper addresses this issue by introducing a trainable deep learning architecture, coined neural snowflake, that can adaptively implement fractal-like metrics on $\mathbb{R}^d$. We prove that any given finite weights graph can be isometrically embedded by a standard MLP encoder. Furthermore, when the latent graph can be represented in the feature space of a sufficiently regular kernel, we show that the combined neural snowflake and MLP encoder do not succumb to the curse of dimensionality by using only a low-degree polynomial number of parameters in the number of nodes. This implementation enables a low-dimensional isometric embedding of the latent graph. We conduct synthetic experiments to demonstrate the superior metric learning capabilities of neural snowflakes when compared to more familiar spaces like Euclidean space. Additionally, we carry out latent graph inference experiments on graph benchmarks. Consistently, the neural snowflake model achieves predictive performance that either matches or surpasses that of the state-of-the-art latent graph inference models. Importantly, this performance improvement is achieved without requiring random search for optimal latent geometry. Instead, the neural snowflake model achieves this enhancement in a differentiable manner.
Abstract:Score-based generative models (SGMs) sample from a target distribution by iteratively transforming noise using the score function of the perturbed target. For any finite training set, this score function can be evaluated in closed form, but the resulting SGM memorizes its training data and does not generate novel samples. In practice, one approximates the score by training a neural network via score-matching. The error in this approximation promotes generalization, but neural SGMs are costly to train and sample, and the effective regularization this error provides is not well-understood theoretically. In this work, we instead explicitly smooth the closed-form score to obtain an SGM that generates novel samples without training. We analyze our model and propose an efficient nearest-neighbor-based estimator of its score function. Using this estimator, our method achieves sampling times competitive with neural SGMs while running on consumer-grade CPUs.