Abstract:Many competitive clustering pipelines have a multi-modal design, leveraging large language models (LLMs) or other text encoders, and text-image pairs, which are often unavailable in real-world downstream applications. Additionally, such frameworks are generally complicated to train and require substantial computational resources, making widespread adoption challenging. In this work, we show that in deep clustering, competitive performance with more complex state-of-the-art methods can be achieved using a text-free and highly simplified training pipeline. In particular, our approach, Simple Clustering via Pre-trained models (SCP), trains only a small cluster head while leveraging pre-trained vision model feature representations and positive data pairs. Experiments on benchmark datasets including CIFAR-10, CIFAR-20, CIFAR-100, STL-10, ImageNet-10, and ImageNet-Dogs, demonstrate that SCP achieves highly competitive performance. Furthermore, we provide a theoretical result explaining why, at least under ideal conditions, additional text-based embeddings may not be necessary to achieve strong clustering performance in vision.
Abstract:Zhu and Melnykov (2018) develop a model to fit mixture models when the components are derived from the Manly transformation. Their EM algorithm utilizes Nelder-Mead optimization in the M-step to update the skew parameter, $\boldsymbol{\lambda}_g$. An alternative EM gradient algorithm is proposed, using one step of Newton's method, when initial estimates for the model parameters are good.
Abstract:A mixture of multivariate Poisson-log normal factor analyzers is introduced by imposing constraints on the covariance matrix, which resulted in flexible models for clustering purposes. In particular, a class of eight parsimonious mixture models based on the mixtures of factor analyzers model are introduced. Variational Gaussian approximation is used for parameter estimation, and information criteria are used for model selection. The proposed models are explored in the context of clustering discrete data arising from RNA sequencing studies. Using real and simulated data, the models are shown to give favourable clustering performance. The GitHub R package for this work is available at https://github.com/anjalisilva/mixMPLNFA and is released under the open-source MIT license.
Abstract:Matrix-variate distributions are a recent addition to the model-based clustering field, thereby making it possible to analyze data in matrix form with complex structure such as images and time series. Due to its recent appearance, there is limited literature on matrix-variate data, with even less on dealing with outliers in these models. An approach for clustering matrix-variate normal data with outliers is discussed. The approach, which uses the distribution of subset log-likelihoods, extends the OCLUST algorithm to matrix-variate normal data and uses an iterative approach to detect and trim outliers.
Abstract:An approach for clustering multi-way data is introduced based on a finite mixture of multidimensional arrays. Attention to the use of multidimensional arrays for clustering has thus far been limited to two-dimensional arrays, i.e., matrices or order-two tensors. Accordingly, this is the first paper to develop an approach for clustering d-dimensional arrays for d>2 or, in other words, for clustering using order-d tensors.
Abstract:Mixtures of Gaussian distributions are a popular choice in model-based clustering. Outliers can affect parameters estimation and, as such, must be accounted for. Algorithms such as TCLUST discern the most likely outliers, but only when the proportion of outlying points is known \textit{a priori}. It is proved that, for a finite Gaussian mixture model, the log-likelihoods of the subset models are beta-distributed. An algorithm is then proposed that predicts the proportion of outliers by measuring the adherence of a set of subset log-likelihoods to a beta reference distribution. This algorithm removes the least likely points, which are deemed outliers, until model assumptions are met.
Abstract:Robust clustering of high-dimensional data is an important topic because, in many practical situations, real data sets are heavy-tailed and/or asymmetric. Moreover, traditional model-based clustering often fails for high dimensional data due to the number of free covariance parameters. A parametrization of the component scale matrices for the mixture of generalized hyperbolic distributions is proposed by including a penalty term in the likelihood constraining the parameters resulting in a flexible model for high dimensional data and a meaningful interpretation. An analytically feasible EM algorithm is developed by placing a gamma-Lasso penalty constraining the concentration matrix. The proposed methodology is investigated through simulation studies and two real data sets.
Abstract:There is a need for the development of models that are able to account for discreteness in data, along with its time series properties and correlation. Our focus falls on INteger-valued AutoRegressive (INAR) type models. The INAR type models can be used in conjunction with existing model-based clustering techniques to cluster discrete valued time series data. With the use of a finite mixture model, several existing techniques such as the selection of the number of clusters, estimation using expectation-maximization and model selection are applicable. The proposed model is then demonstrated on real data to illustrate its clustering applications.
Abstract:Functional data analysis is a statistical framework where data are assumed to follow some functional form. This method of analysis is commonly applied to time series data, where time, measured continuously or in discrete intervals, serves as the location for a function's value. Gaussian processes are a generalization of the multivariate normal distribution to function space and, in this paper, they are used to shed light on coastal rainfall patterns in British Columbia (BC). Specifically, this work addressed the question over how one should carry out an exploratory cluster analysis for the BC, or any similar, coastal rainfall data. An approach is developed for clustering multiple processes observed on a comparable interval, based on how similar their underlying covariance kernel is. This approach provides significant insights into the BC data, and these insights can be described in terms of El Nino and La Nina; however, the result is not simply one cluster representing El Nino years and another for La Nina years. From one perspective, the results show that clustering annual rainfall can potentially be used to identify extreme weather patterns.
Abstract:The expectation-maximization (EM) algorithm is almost ubiquitous for parameter estimation in model-based clustering problems; however, it can become stuck at local maxima, due to its single path, monotonic nature. Rather than using an EM algorithm, an evolutionary algorithm (EA) is developed. This EA facilitates a different search of the fitness landscape, i.e., the likelihood surface, utilizing both crossover and mutation. Furthermore, this EA represents an efficient approach to "hard" model-based clustering and so it can be viewed as a sort of generalization of the k-means algorithm, which is itself equivalent to a classification EM algorithm for a Gaussian mixture model with spherical component covariances. The EA is illustrated on several data sets, and its performance is compared to k-means clustering as well as model-based clustering with an EM algorithm.