Abstract:Tabular machine learning is an important field for industry and science. In this field, table rows are usually treated as independent data samples, but additional information about relations between them is sometimes available and can be used to improve predictive performance. Such information can be naturally modeled with a graph, thus tabular machine learning may benefit from graph machine learning methods. However, graph machine learning models are typically evaluated on datasets with homogeneous node features, which have little in common with heterogeneous mixtures of numerical and categorical features present in tabular datasets. Thus, there is a critical difference between the data used in tabular and graph machine learning studies, which does not allow one to understand how successfully graph models can be transferred to tabular data. To bridge this gap, we propose a new benchmark of diverse graphs with heterogeneous tabular node features and realistic prediction tasks. We use this benchmark to evaluate a vast set of models, including simple methods previously overlooked in the literature. Our experiments show that graph neural networks (GNNs) can indeed often bring gains in predictive performance for tabular data, but standard tabular models also can be adapted to work with graph data by using simple feature preprocessing, which sometimes enables them to compete with and even outperform GNNs. Based on our empirical study, we provide insights for researchers and practitioners in both tabular and graph machine learning fields.
Abstract:This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.
Abstract:In reliable decision-making systems based on machine learning, models have to be robust to distributional shifts or provide the uncertainty of their predictions. In node-level problems of graph learning, distributional shifts can be especially complex since the samples are interdependent. To evaluate the performance of graph models, it is important to test them on diverse and meaningful distributional shifts. However, most graph benchmarks that consider distributional shifts for node-level problems focus mainly on node features, while data in graph problems is primarily defined by its structural properties. In this work, we propose a general approach for inducing diverse distributional shifts based on graph structure. We use this approach to create data splits according to several structural node properties: popularity, locality, and density. In our experiments, we thoroughly evaluate the proposed distributional shifts and show that they are quite challenging for existing graph models. We hope that the proposed approach will be helpful for the further development of reliable graph machine learning.
Abstract:The problem of out-of-distribution detection for graph classification is far from being solved. The existing models tend to be overconfident about OOD examples or completely ignore the detection task. In this work, we consider this problem from the uncertainty estimation perspective and perform the comparison of several recently proposed methods. In our experiment, we find that there is no universal approach for OOD detection, and it is important to consider both graph representations and predictive categorical distribution.