Department of Computer Science, RWTH Aachen University, Germany
Abstract:Topological Data Analysis (TDA) allows us to extract powerful topological and higher-order information on the global shape of a data set or point cloud. Tools like Persistent Homology or the Euler Transform give a single complex description of the global structure of the point cloud. However, common machine learning applications like classification require point-level information and features to be available. In this paper, we bridge this gap and propose a novel method to extract node-level topological features from complex point clouds using discrete variants of concepts from algebraic topology and differential geometry. We verify the effectiveness of these topological point features (TOPF) on both synthetic and real-world data and study their robustness under noise.
Abstract:Graph neural networks (GNNs) have emerged as powerful tools for processing relational data in applications. However, GNNs suffer from the problem of oversmoothing, the property that the features of all nodes exponentially converge to the same vector over layers, prohibiting the design of deep GNNs. In this work we study oversmoothing in graph convolutional networks (GCNs) by using their Gaussian process (GP) equivalence in the limit of infinitely many hidden features. By generalizing methods from conventional deep neural networks (DNNs), we can describe the distribution of features at the output layer of deep GCNs in terms of a GP: as expected, we find that typical parameter choices from the literature lead to oversmoothing. The theory, however, allows us to identify a new, nonoversmoothing phase: if the initial weights of the network have sufficiently large variance, GCNs do not oversmooth, and node features remain informative even at large depth. We demonstrate the validity of this prediction in finite-size GCNs by training a linear classifier on their output. Moreover, using the linearization of the GCN GP, we generalize the concept of propagation depth of information from DNNs to GCNs. This propagation depth diverges at the transition between the oversmoothing and non-oversmoothing phase. We test the predictions of our approach and find good agreement with finite-size GCNs. Initializing GCNs near the transition to the non-oversmoothing phase, we obtain networks which are both deep and expressive.
Abstract:Triggered by limitations of graph-based deep learning methods in terms of computational expressivity and model flexibility, recent years have seen a surge of interest in computational models that operate on higher-order topological domains such as hypergraphs and simplicial complexes. While the increased expressivity of these models can indeed lead to a better classification performance and a more faithful representation of the underlying system, the computational cost of these higher-order models can increase dramatically. To this end, we here explore a simplicial complex neural network learning architecture based on random walks and fast 1D convolutions (SCRaWl), in which we can adjust the increase in computational cost by varying the length and number of random walks considered while accounting for higher-order relationships. Importantly, due to the random walk-based design, the expressivity of the proposed architecture is provably incomparable to that of existing message-passing simplicial neural networks. We empirically evaluate SCRaWl on real-world datasets and show that it outperforms other simplicial neural networks.
Abstract:Topological deep learning (TDL) is a rapidly evolving field that uses topological features to understand and design deep learning models. This paper posits that TDL may complement graph representation learning and geometric deep learning by incorporating topological concepts, and can thus provide a natural choice for various machine learning settings. To this end, this paper discusses open problems in TDL, ranging from practical benefits to theoretical foundations. For each problem, it outlines potential solutions and future research opportunities. At the same time, this paper serves as an invitation to the scientific community to actively participate in TDL research to unlock the potential of this emerging field.
Abstract:We introduce topox, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes. topox consists of three packages: toponetx facilitates constructing and computing on these domains, including working with nodes, edges and higher-order cells; topoembedx provides methods to embed topological domains into vector spaces, akin to popular graph-based embedding algorithms such as node2vec; topomodelx is built on top of PyTorch and offers a comprehensive toolbox of higher-order message passing functions for neural networks on topological domains. The extensively documented and unit-tested source code of topox is available under MIT license at https://github.com/pyt-team.
Abstract:Graph-based signal processing techniques have become essential for handling data in non-Euclidean spaces. However, there is a growing awareness that these graph models might need to be expanded into `higher-order' domains to effectively represent the complex relations found in high-dimensional data. Such higher-order domains are typically modeled either as hypergraphs, or as simplicial, cubical or other cell complexes. In this context, cell complexes are often seen as a subclass of hypergraphs with additional algebraic structure that can be exploited, e.g., to develop a spectral theory. In this article, we promote an alternative perspective. We argue that hypergraphs and cell complexes emphasize \emph{different} types of relations, which may have different utility depending on the application context. Whereas hypergraphs are effective in modeling set-type, multi-body relations between entities, cell complexes provide an effective means to model hierarchical, interior-to-boundary type relations. We discuss the relative advantages of these two choices and elaborate on the previously introduced concept of a combinatorial complex that enables co-existing set-type and hierarchical relations. Finally, we provide a brief numerical experiment to demonstrate that this modelling flexibility can be advantageous in learning tasks.
Abstract:The rich spectral information of the graph Laplacian has been instrumental in graph theory, machine learning, and graph signal processing for applications such as graph classification, clustering, or eigenmode analysis. Recently, the Hodge Laplacian has come into focus as a generalisation of the ordinary Laplacian for higher-order graph models such as simplicial and cellular complexes. Akin to the traditional analysis of graph Laplacians, many authors analyse the smallest eigenvalues of the Hodge Laplacian, which are connected to important topological properties such as homology. However, small eigenvalues of the Hodge Laplacian can carry different information depending on whether they are related to curl or gradient eigenmodes, and thus may not be comparable. We therefore introduce the notion of persistent eigenvector similarity and provide a method to track individual harmonic, curl, and gradient eigenvectors/-values through the so-called persistence filtration, leveraging the full information contained in the Hodge-Laplacian spectrum across all possible scales of a point cloud. Finally, we use our insights (a) to introduce a novel form of topological spectral clustering and (b) to classify edges and higher-order simplices based on their relationship to the smallest harmonic, curl, and gradient eigenvectors.
Abstract:Persistent Homology is a widely used topological data analysis tool that creates a concise description of the topological properties of a point cloud based on a specified filtration. Most filtrations used for persistent homology depend (implicitly) on a chosen metric, which is typically agnostically chosen as the standard Euclidean metric on $\mathbb{R}^n$. Recent work has tried to uncover the 'true' metric on the point cloud using distance-to-measure functions, in order to obtain more meaningful persistent homology results. Here we propose an alternative look at this problem: we posit that information on the point cloud is lost when restricting persistent homology to a single (correct) distance function. Instead, we show how by varying the distance function on the underlying space and analysing the corresponding shifts in the persistence diagrams, we can extract additional topological and geometrical information. Finally, we numerically show that non-isotropic persistent homology can extract information on orientation, orientational variance, and scaling of randomly generated point clouds with good accuracy and conduct some experiments on real-world data.
Abstract:This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.
Abstract:Obtaining sparse, interpretable representations of observable data is crucial in many machine learning and signal processing tasks. For data representing flows along the edges of a graph, an intuitively interpretable way to obtain such representations is to lift the graph structure to a simplicial complex: The eigenvectors of the associated Hodge-Laplacian, respectively the incidence matrices of the corresponding simplicial complex then induce a Hodge decomposition, which can be used to represent the observed data in terms of gradient, curl, and harmonic flows. In this paper, we generalize this approach to cellular complexes and introduce the cell inference optimization problem, i.e., the problem of augmenting the observed graph by a set of cells, such that the eigenvectors of the associated Hodge Laplacian provide a sparse, interpretable representation of the observed edge flows on the graph. We show that this problem is NP-hard and introduce an efficient approximation algorithm for its solution. Experiments on real-world and synthetic data demonstrate that our algorithm outperforms current state-of-the-art methods while being computationally efficient.