Abstract:We consider the problem of classifying trajectories on a discrete or discretised 2-dimensional manifold modelled by a simplicial complex. Previous works have proposed to project the trajectories into the harmonic eigenspace of the Hodge Laplacian, and then cluster the resulting embeddings. However, if the considered space has vanishing homology (i.e., no "holes"), then the harmonic space of the 1-Hodge Laplacian is trivial and thus the approach fails. Here we propose to view this issue akin to a sensor placement problem and present an algorithm that aims to learn "optimal holes" to distinguish a set of given trajectory classes. Specifically, given a set of labelled trajectories, which we interpret as edge-flows on the underlying simplicial complex, we search for 2-simplices whose deletion results in an optimal separation of the trajectory labels according to the corresponding spectral embedding of the trajectories into the harmonic space. Finally, we generalise this approach to the unsupervised setting.
Abstract:Topological Data Analysis (TDA) allows us to extract powerful topological and higher-order information on the global shape of a data set or point cloud. Tools like Persistent Homology or the Euler Transform give a single complex description of the global structure of the point cloud. However, common machine learning applications like classification require point-level information and features to be available. In this paper, we bridge this gap and propose a novel method to extract node-level topological features from complex point clouds using discrete variants of concepts from algebraic topology and differential geometry. We verify the effectiveness of these topological point features (TOPF) on both synthetic and real-world data and study their robustness under noise.
Abstract:The rich spectral information of the graph Laplacian has been instrumental in graph theory, machine learning, and graph signal processing for applications such as graph classification, clustering, or eigenmode analysis. Recently, the Hodge Laplacian has come into focus as a generalisation of the ordinary Laplacian for higher-order graph models such as simplicial and cellular complexes. Akin to the traditional analysis of graph Laplacians, many authors analyse the smallest eigenvalues of the Hodge Laplacian, which are connected to important topological properties such as homology. However, small eigenvalues of the Hodge Laplacian can carry different information depending on whether they are related to curl or gradient eigenmodes, and thus may not be comparable. We therefore introduce the notion of persistent eigenvector similarity and provide a method to track individual harmonic, curl, and gradient eigenvectors/-values through the so-called persistence filtration, leveraging the full information contained in the Hodge-Laplacian spectrum across all possible scales of a point cloud. Finally, we use our insights (a) to introduce a novel form of topological spectral clustering and (b) to classify edges and higher-order simplices based on their relationship to the smallest harmonic, curl, and gradient eigenvectors.
Abstract:Persistent Homology is a widely used topological data analysis tool that creates a concise description of the topological properties of a point cloud based on a specified filtration. Most filtrations used for persistent homology depend (implicitly) on a chosen metric, which is typically agnostically chosen as the standard Euclidean metric on $\mathbb{R}^n$. Recent work has tried to uncover the 'true' metric on the point cloud using distance-to-measure functions, in order to obtain more meaningful persistent homology results. Here we propose an alternative look at this problem: we posit that information on the point cloud is lost when restricting persistent homology to a single (correct) distance function. Instead, we show how by varying the distance function on the underlying space and analysing the corresponding shifts in the persistence diagrams, we can extract additional topological and geometrical information. Finally, we numerically show that non-isotropic persistent homology can extract information on orientation, orientational variance, and scaling of randomly generated point clouds with good accuracy and conduct some experiments on real-world data.
Abstract:We present Topological Point Cloud Clustering (TPCC), a new method to cluster points in an arbitrary point cloud based on their contribution to global topological features. TPCC synthesizes desirable features from spectral clustering and topological data analysis and is based on considering the spectral properties of a simplicial complex associated to the considered point cloud. As it is based on considering sparse eigenvector computations, TPCC is similarly easy to interpret and implement as spectral clustering. However, by focusing not just on a single matrix associated to a graph created from the point cloud data, but on a whole set of Hodge-Laplacians associated to an appropriately constructed simplicial complex, we can leverage a far richer set of topological features to characterize the data points within the point cloud and benefit from the relative robustness of topological techniques against noise. We test the performance of TPCC on both synthetic and real-world data and compare it with classical spectral clustering.
Abstract:We establish a framework for signal processing on product spaces of simplicial and cellular complexes. For simplicity, we focus on the product of two complexes representing time and space, although our results generalize naturally to products of simplicial complexes of arbitrary dimension. Our framework leverages the structure of the eigenmodes of the Hodge Laplacian of the product space to jointly filter along time and space. To this end, we provide a decomposition theorem of the Hodge Laplacian of the product space, which highlights how the product structure induces a decomposition of each eigenmode into a spatial and temporal component. Finally, we apply our method to real world data, specifically for interpolating trajectories of buoys in the ocean from a limited set of observed trajectories.