Abstract:A significant challenge for computation offloading in wireless multi-hop networks is the complex interaction among traffic flows in the presence of interference. Existing approaches often ignore these key effects and/or rely on outdated queueing and channel state information. To fill these gaps, we reformulate joint offloading and routing as a routing problem on an extended graph with physical and virtual links. We adopt the state-of-the-art shortest path-biased Backpressure routing algorithm, which allows the destination and the route of a job to be dynamically adjusted at every time step based on network-wide long-term information and real-time states of local neighborhoods. In large networks, our approach achieves smaller makespan than existing approaches, such as separated Backpressure offloading and joint offloading and routing based on linear programming.
Abstract:Graph neural networks (GNNs) are powerful tools for developing scalable, decentralized artificial intelligence in large-scale networked systems, such as wireless networks, power grids, and transportation networks. Currently, GNNs in networked systems mostly follow a paradigm of `centralized training, distributed execution', which limits their adaptability and slows down their development cycles. In this work, we fill this gap for the first time by developing a communication-efficient, fully distributed online training approach for GNNs applied to large networked systems. For a mini-batch with $B$ samples, our approach of training an $L$-layer GNN only adds $L$ rounds of message passing to the $LB$ rounds required by GNN inference, with doubled message sizes. Through numerical experiments in graph-based node regression, power allocation, and link scheduling in wireless networks, we demonstrate the effectiveness of our approach in training GNNs under supervised, unsupervised, and reinforcement learning paradigms.
Abstract:Graph Neural Networks (GNNs) have emerged as a promising tool to handle data exhibiting an irregular structure. However, most GNN architectures perform well on homophilic datasets, where the labels of neighboring nodes are likely to be the same. In recent years, an increasing body of work has been devoted to the development of GNN architectures for heterophilic datasets, where labels do not exhibit this low-pass behavior. In this work, we create a new graph in which nodes are connected if they share structural characteristics, meaning a higher chance of sharing their labels, and then use this new graph in the GNN architecture. To do this, we compute the k-nearest neighbors graph according to distances between structural features, which are either (i) role-based, such as degree, or (ii) global, such as centrality measures. Experiments show that the labels are smoother in this newly defined graph and that the performance of GNN architectures improves when using this alternative structure.
Abstract:Predicting team dynamics from personality traits remains a fundamental challenge for the psychological sciences and team-based organizations. Understanding how team composition generates team processes can significantly advance team-based research along with providing practical guidelines for team staffing and training. Although the Input-Process-Output (IPO) model has been useful for studying these connections, the complex nature of team member interactions demands a more dynamic approach. We develop a computational model of conversational turn-taking within self-organized teams that can provide insight into the relationships between team member personality traits and team communication dynamics. We focus on turn-taking patterns between team members, independent of content, which can significantly influence team emergent states and outcomes while being objectively measurable and quantifiable. As our model is trained on conversational data from teams of given trait compositions, it can learn the relationships between individual traits and speaking behaviors and predict group-wide patterns of communication based on team trait composition alone. We first evaluate the performance of our model using simulated data and then apply it to real-world data collected from self-organized student teams. In comparison to baselines, our model is more accurate at predicting speaking turn sequences and can reveal new relationships between team member traits and their communication patterns. Our approach offers a more data-driven and dynamic understanding of team processes. By bridging the gap between individual personality traits and team communication patterns, our model has the potential to inform theories of team processes and provide powerful insights into optimizing team staffing and training.
Abstract:State-space models are a popular statistical framework for analysing sequential data. Within this framework, particle filters are often used to perform inference on non-linear state-space models. We introduce a new method, StateMixNN, that uses a pair of neural networks to learn the proposal distribution and transition distribution of a particle filter. Both distributions are approximated using multivariate Gaussian mixtures. The component means and covariances of these mixtures are learnt as outputs of learned functions. Our method is trained targeting the log-likelihood, thereby requiring only the observation series, and combines the interpretability of state-space models with the flexibility and approximation power of artificial neural networks. The proposed method significantly improves recovery of the hidden state in comparison with the state-of-the-art, showing greater improvement in highly non-linear scenarios.
Abstract:This work presents a low-rank tensor model for multi-dimensional Markov chains. A common approach to simplify the dynamical behavior of a Markov chain is to impose low-rankness on the transition probability matrix. Inspired by the success of these matrix techniques, we present low-rank tensors for representing transition probabilities on multi-dimensional state spaces. Through tensor decomposition, we provide a connection between our method and classical probabilistic models. Moreover, our proposed model yields a parsimonious representation with fewer parameters than matrix-based approaches. Unlike these methods, which impose low-rankness uniformly across all states, our tensor method accounts for the multi-dimensionality of the state space. We also propose an optimization-based approach to estimate a Markov model as a low-rank tensor. Our optimization problem can be solved by the alternating direction method of multipliers (ADMM), which enjoys convergence to a stationary solution. We empirically demonstrate that our tensor model estimates Markov chains more efficiently than conventional techniques, requiring both fewer samples and parameters. We perform numerical simulations for both a synthetic low-rank Markov chain and a real-world example with New York City taxi data, showcasing the advantages of multi-dimensionality for modeling state spaces.
Abstract:Graphons are continuous models that represent the structure of graphs and allow the generation of graphs of varying sizes. We propose Scalable Implicit Graphon Learning (SIGL), a scalable method that combines implicit neural representations (INRs) and graph neural networks (GNNs) to estimate a graphon from observed graphs. Unlike existing methods, which face important limitations like fixed resolution and scalability issues, SIGL learns a continuous graphon at arbitrary resolutions. GNNs are used to determine the correct node ordering, improving graph alignment. Furthermore, we characterize the asymptotic consistency of our estimator, showing that more expressive INRs and GNNs lead to consistent estimators. We evaluate SIGL in synthetic and real-world graphs, showing that it outperforms existing methods and scales effectively to larger graphs, making it ideal for tasks like graph data augmentation.
Abstract:Many problems that cloud operators solve are computationally expensive, and operators often use heuristic algorithms (that are faster and scale better than optimal) to solve them more efficiently. Heuristic analyzers enable operators to find when and by how much their heuristics underperform. However, these tools do not provide enough detail for operators to mitigate the heuristic's impact in practice: they only discover a single input instance that causes the heuristic to underperform (and not the full set), and they do not explain why. We propose XPlain, a tool that extends these analyzers and helps operators understand when and why their heuristics underperform. We present promising initial results that show such an extension is viable.
Abstract:Covariance-based data processing is widespread across signal processing and machine learning applications due to its ability to model data interconnectivities and dependencies. However, harmful biases in the data may become encoded in the sample covariance matrix and cause data-driven methods to treat different subpopulations unfairly. Existing works such as fair principal component analysis (PCA) mitigate these effects, but remain unstable in low sample regimes, which in turn may jeopardize the fairness goal. To address both biases and instability, we propose Fair coVariance Neural Networks (FVNNs), which perform graph convolutions on the covariance matrix for both fair and accurate predictions. Our FVNNs provide a flexible model compatible with several existing bias mitigation techniques. In particular, FVNNs allow for mitigating the bias in two ways: first, they operate on fair covariance estimates that remove biases from their principal components; second, they are trained in an end-to-end fashion via a fairness regularizer in the loss function so that the model parameters are tailored to solve the task directly in a fair manner. We prove that FVNNs are intrinsically fairer than analogous PCA approaches thanks to their stability in low sample regimes. We validate the robustness and fairness of our model on synthetic and real-world data, showcasing the flexibility of FVNNs along with the tradeoff between fair and accurate performance.
Abstract:Graph neural networks (GNNs) have become a workhorse approach for learning from data defined over irregular domains, typically by implicitly assuming that the data structure is represented by a homophilic graph. However, recent works have revealed that many relevant applications involve heterophilic data where the performance of GNNs can be notably compromised. To address this challenge, we present a simple yet effective architecture designed to mitigate the limitations of the homophily assumption. The proposed architecture reinterprets the role of graph filters in convolutional GNNs, resulting in a more general architecture while incorporating a stronger inductive bias than GNNs based on filter banks. The proposed convolutional layer enhances the expressive capacity of the architecture enabling it to learn from both homophilic and heterophilic data and preventing the issue of oversmoothing. From a theoretical standpoint, we show that the proposed architecture is permutation equivariant. Finally, we show that the proposed GNNs compares favorably relative to several state-of-the-art baselines in both homophilic and heterophilic datasets, showcasing its promising potential.