Abstract:In pursuit of reinforcement learning systems that could train in physical environments, we investigate multi-task approaches as a means to alleviate the need for massive data acquisition. In a tabular scenario where the Q-functions are collected across tasks, we model our learning problem as optimizing a higher order tensor structure. Recognizing that close-related tasks may require similar actions, our proposed method imposes a low-rank condition on this aggregated Q-tensor. The rationale behind this approach to multi-task learning is that the low-rank structure enforces the notion of similarity, without the need to explicitly prescribe which tasks are similar, but inferring this information from a reduced amount of data simultaneously with the stochastic optimization of the Q-tensor. The efficiency of our low-rank tensor approach to multi-task learning is demonstrated in two numerical experiments, first in a benchmark environment formed by a collection of inverted pendulums, and then into a practical scenario involving multiple wireless communication devices.
Abstract:We study the problem of learning optimal policies in finite-horizon Markov Decision Processes (MDPs) using low-rank reinforcement learning (RL) methods. In finite-horizon MDPs, the policies, and therefore the value functions (VFs) are not stationary. This aggravates the challenges of high-dimensional MDPs, as they suffer from the curse of dimensionality and high sample complexity. To address these issues, we propose modeling the VFs of finite-horizon MDPs as low-rank tensors, enabling a scalable representation that renders the problem of learning optimal policies tractable. We introduce an optimization-based framework for solving the Bellman equations with low-rank constraints, along with block-coordinate descent (BCD) and block-coordinate gradient descent (BCGD) algorithms, both with theoretical convergence guarantees. For scenarios where the system dynamics are unknown, we adapt the proposed BCGD method to estimate the VFs using sampled trajectories. Numerical experiments further demonstrate that the proposed framework reduces computational demands in controlled synthetic scenarios and more realistic resource allocation problems.
Abstract:Reinforcement learning (RL) aims to estimate the action to take given a (time-varying) state, with the goal of maximizing a cumulative reward function. Predominantly, there are two families of algorithms to solve RL problems: value-based and policy-based methods, with the latter designed to learn a probabilistic parametric policy from states to actions. Most contemporary approaches implement this policy using a neural network (NN). However, NNs usually face issues related to convergence, architectural suitability, hyper-parameter selection, and underutilization of the redundancies of the state-action representations (e.g. locally similar states). This paper postulates multi-linear mappings to efficiently estimate the parameters of the RL policy. More precisely, we leverage the PARAFAC decomposition to design tensor low-rank policies. The key idea involves collecting the policy parameters into a tensor and leveraging tensor-completion techniques to enforce low rank. We establish theoretical guarantees of the proposed methods for various policy classes and validate their efficacy through numerical experiments. Specifically, we demonstrate that tensor low-rank policy models reduce computational and sample complexities in comparison to NN models while achieving similar rewards.
Abstract:Graph Neural Networks (GNNs) have emerged as a promising tool to handle data exhibiting an irregular structure. However, most GNN architectures perform well on homophilic datasets, where the labels of neighboring nodes are likely to be the same. In recent years, an increasing body of work has been devoted to the development of GNN architectures for heterophilic datasets, where labels do not exhibit this low-pass behavior. In this work, we create a new graph in which nodes are connected if they share structural characteristics, meaning a higher chance of sharing their labels, and then use this new graph in the GNN architecture. To do this, we compute the k-nearest neighbors graph according to distances between structural features, which are either (i) role-based, such as degree, or (ii) global, such as centrality measures. Experiments show that the labels are smoother in this newly defined graph and that the performance of GNN architectures improves when using this alternative structure.
Abstract:Graph neural networks (GNNs) have emerged as a promising solution to deal with unstructured data, outperforming traditional deep learning architectures. However, most of the current GNN models are designed to work with a single graph, which limits their applicability in many real-world scenarios where multiple graphs may be involved. To address this limitation, we propose a novel graph-based deep learning architecture to handle tasks where two sets of signals exist, each defined on a different graph. First we consider the setting where the input is represented as a signal on top of one graph (input graph) and the output is a graph signal defined over a different graph (output graph). For this setup, we propose a three-block architecture where we first process the input data using a GNN that operates over the input graph, then apply a transformation function that operates in a latent space and maps the signals from the input to the output graph, and finally implement a second GNN that operates over the output graph. Our goal is not to propose a single specific definition for each of the three blocks, but rather to provide a flexible approach to solve tasks involving data defined on two graphs. The second part of the paper addresses a self-supervised setup, where the focus is not on the output space but on the underlying latent space and, inspired by Canonical Correlation Analysis, we seek informative representations of the data that can be leveraged to solve a downstream task. By leveraging information from multiple graphs, the proposed architecture can capture more intricate relationships between different entities in the data. We test this in several experimental setups using synthetic and real world datasets, and observe that the proposed architecture works better than traditional deep learning architectures, showcasing the importance of leveraging the information of the two graphs.
Abstract:This work presents a low-rank tensor model for multi-dimensional Markov chains. A common approach to simplify the dynamical behavior of a Markov chain is to impose low-rankness on the transition probability matrix. Inspired by the success of these matrix techniques, we present low-rank tensors for representing transition probabilities on multi-dimensional state spaces. Through tensor decomposition, we provide a connection between our method and classical probabilistic models. Moreover, our proposed model yields a parsimonious representation with fewer parameters than matrix-based approaches. Unlike these methods, which impose low-rankness uniformly across all states, our tensor method accounts for the multi-dimensionality of the state space. We also propose an optimization-based approach to estimate a Markov model as a low-rank tensor. Our optimization problem can be solved by the alternating direction method of multipliers (ADMM), which enjoys convergence to a stationary solution. We empirically demonstrate that our tensor model estimates Markov chains more efficiently than conventional techniques, requiring both fewer samples and parameters. We perform numerical simulations for both a synthetic low-rank Markov chain and a real-world example with New York City taxi data, showcasing the advantages of multi-dimensionality for modeling state spaces.
Abstract:In this paper, we present XST-GCNN (eXplainable Spatio-Temporal Graph Convolutional Neural Network), a novel architecture for processing heterogeneous and irregular Multivariate Time Series (MTS) data. Our approach captures temporal and feature dependencies within a unified spatio-temporal pipeline by leveraging a GCNN that uses a spatio-temporal graph aimed at optimizing predictive accuracy and interoperability. For graph estimation, we introduce techniques, including one based on the (heterogeneous) Gower distance. Once estimated, we propose two methods for graph construction: one based on the Cartesian product, treating temporal instants homogeneously, and another spatio-temporal approach with distinct graphs per time step. We also propose two GCNN architectures: a standard GCNN with a normalized adjacency matrix and a higher-order polynomial GCNN. In addition to accuracy, we emphasize explainability by designing an inherently interpretable model and performing a thorough interpretability analysis, identifying key feature-time combinations that drive predictions. We evaluate XST-GCNN using real-world Electronic Health Record data from University Hospital of Fuenlabrada to predict Multidrug Resistance (MDR) in ICU patients, a critical healthcare challenge linked to high mortality and complex treatments. Our architecture outperforms traditional models, achieving a mean ROC-AUC score of 81.03 +- 2.43. Furthermore, the interpretability analysis provides actionable insights into clinical factors driving MDR predictions, enhancing model transparency. This work sets a benchmark for tackling complex inference tasks with heterogeneous MTS, offering a versatile, interpretable solution for real-world applications.
Abstract:Graph learning is the fundamental task of estimating unknown graph connectivity from available data. Typical approaches assume that not only is all information available simultaneously but also that all nodes can be observed. However, in many real-world scenarios, data can neither be known completely nor obtained all at once. We present a novel method for online graph estimation that accounts for the presence of hidden nodes. We consider signals that are stationary on the underlying graph, which provides a model for the unknown connections to hidden nodes. We then formulate a convex optimization problem for graph learning from streaming, incomplete graph signals. We solve the proposed problem through an efficient proximal gradient algorithm that can run in real-time as data arrives sequentially. Additionally, we provide theoretical conditions under which our online algorithm is similar to batch-wise solutions. Through experimental results on synthetic and real-world data, we demonstrate the viability of our approach for online graph learning in the presence of missing observations.
Abstract:Graph neural networks (GNNs) have become a workhorse approach for learning from data defined over irregular domains, typically by implicitly assuming that the data structure is represented by a homophilic graph. However, recent works have revealed that many relevant applications involve heterophilic data where the performance of GNNs can be notably compromised. To address this challenge, we present a simple yet effective architecture designed to mitigate the limitations of the homophily assumption. The proposed architecture reinterprets the role of graph filters in convolutional GNNs, resulting in a more general architecture while incorporating a stronger inductive bias than GNNs based on filter banks. The proposed convolutional layer enhances the expressive capacity of the architecture enabling it to learn from both homophilic and heterophilic data and preventing the issue of oversmoothing. From a theoretical standpoint, we show that the proposed architecture is permutation equivariant. Finally, we show that the proposed GNNs compares favorably relative to several state-of-the-art baselines in both homophilic and heterophilic datasets, showcasing its promising potential.
Abstract:This paper introduces a probabilistic approach for tracking the dynamics of unweighted and directed graphs using state-space models (SSMs). Unlike conventional topology inference methods that assume static graphs and generate point-wise estimates, our method accounts for dynamic changes in the network structure over time. We model the network at each timestep as the state of the SSM, and use observations to update beliefs that quantify the probability of the network being in a particular state. Then, by considering the dynamics of transition and observation models through the update and prediction steps, respectively, the proposed method can incorporate the information of real-time graph signals into the beliefs. These beliefs provide a probability distribution of the network at each timestep, being able to provide both an estimate for the network and the uncertainty it entails. Our approach is evaluated through experiments with synthetic and real-world networks. The results demonstrate that our method effectively estimates network states and accounts for the uncertainty in the data, outperforming traditional techniques such as recursive least squares.