Abstract:Large language models (LLMs) excel in many tasks in NLP and beyond, but most open models have very limited coverage of smaller languages and LLM work tends to focus on languages where nearly unlimited data is available for pretraining. In this work, we study the challenges of creating LLMs for Finnish, a language spoken by less than 0.1% of the world population. We compile an extensive dataset of Finnish combining web crawls, news, social media and eBooks. We pursue two approaches to pretrain models: 1) we train seven monolingual models from scratch (186M to 13B parameters) dubbed FinGPT, 2) we continue the pretraining of the multilingual BLOOM model on a mix of its original training data and Finnish, resulting in a 176 billion parameter model we call BLUUMI. For model evaluation, we introduce FIN-bench, a version of BIG-bench with Finnish tasks. We also assess other model qualities such as toxicity and bias. Our models and tools are openly available at https://turkunlp.org/gpt3-finnish.
Abstract:Most research in Relation Extraction (RE) involves the English language, mainly due to the lack of multi-lingual resources. We propose Multi-CrossRE, the broadest multi-lingual dataset for RE, including 26 languages in addition to English, and covering six text domains. Multi-CrossRE is a machine translated version of CrossRE (Bassignana and Plank, 2022), with a sub-portion including more than 200 sentences in seven diverse languages checked by native speakers. We run a baseline model over the 26 new datasets and--as sanity check--over the 26 back-translations to English. Results on the back-translated data are consistent with the ones on the original English CrossRE, indicating high quality of the translation and the resulting dataset.
Abstract:Relation Extraction (RE) remains a challenging task, especially when considering realistic out-of-domain evaluations. One of the main reasons for this is the limited training size of current RE datasets: obtaining high-quality (manually annotated) data is extremely expensive and cannot realistically be repeated for each new domain. An intermediate training step on data from related tasks has shown to be beneficial across many NLP tasks.However, this setup still requires supplementary annotated data, which is often not available. In this paper, we investigate intermediate pre-training specifically for RE. We exploit the affinity between syntactic structure and semantic RE, and identify the syntactic relations which are closely related to RE by being on the shortest dependency path between two entities. We then take advantage of the high accuracy of current syntactic parsers in order to automatically obtain large amounts of low-cost pre-training data. By pre-training our RE model on the relevant syntactic relations, we are able to outperform the baseline in five out of six cross-domain setups, without any additional annotated data.
Abstract:The problem of gender bias is highly prevalent and well known. In this paper, we have analysed the portrayal of gender roles in English movies, a medium that effectively influences society in shaping people's beliefs and opinions. First, we gathered scripts of films from different genres and derived sentiments and emotions using natural language processing techniques. Afterwards, we converted the scripts into embeddings, i.e. a way of representing text in the form of vectors. With a thorough investigation, we found specific patterns in male and female characters' personality traits in movies that align with societal stereotypes. Furthermore, we used mathematical and machine learning techniques and found some biases wherein men are shown to be more dominant and envious than women, whereas women have more joyful roles in movies. In our work, we introduce, to the best of our knowledge, a novel technique to convert dialogues into an array of emotions by combining it with Plutchik's wheel of emotions. Our study aims to encourage reflections on gender equality in the domain of film and facilitate other researchers in analysing movies automatically instead of using manual approaches.
Abstract:Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
Abstract:The prevailing practice in the academia is to evaluate the model performance on in-domain evaluation data typically set aside from the training corpus. However, in many real world applications the data on which the model is applied may very substantially differ from the characteristics of the training data. In this paper, we focus on Finnish out-of-domain parsing by introducing a novel UD Finnish-OOD out-of-domain treebank including five very distinct data sources (web documents, clinical, online discussions, tweets, and poetry), and a total of 19,382 syntactic words in 2,122 sentences released under the Universal Dependencies framework. Together with the new treebank, we present extensive out-of-domain parsing evaluation utilizing the available section-level information from three different Finnish UD treebanks (TDT, PUD, OOD). Compared to the previously existing treebanks, the new Finnish-OOD is shown include sections more challenging for the general parser, creating an interesting evaluation setting and yielding valuable information for those applying the parser outside of its training domain.
Abstract:In this paper, we approach the problem of semantic search by framing the search task as paraphrase span detection, i.e. given a segment of text as a query phrase, the task is to identify its paraphrase in a given document, the same modelling setup as typically used in extractive question answering. On the Turku Paraphrase Corpus of 100,000 manually extracted Finnish paraphrase pairs including their original document context, we find that our paraphrase span detection model outperforms two strong retrieval baselines (lexical similarity and BERT sentence embeddings) by 31.9pp and 22.4pp respectively in terms of exact match, and by 22.3pp and 12.9pp in terms of token-level F-score. This demonstrates a strong advantage of modelling the task in terms of span retrieval, rather than sentence similarity. Additionally, we introduce a method for creating artificial paraphrase data through back-translation, suitable for languages where manually annotated paraphrase resources for training the span detection model are not available.
Abstract:In recent years, several methods have been proposed for explaining individual predictions of deep learning models, yet there has been little study of how to aggregate these predictions to explain how such models view classes as a whole in text classification tasks. In this work, we propose a method for explaining classes using deep learning models and the Integrated Gradients feature attribution technique by aggregating explanations of individual examples in text classification to general descriptions of the classes. We demonstrate the approach on Web register (genre) classification using the XML-R model and the Corpus of Online Registers of English (CORE), finding that the method identifies plausible and discriminative keywords characterizing all but the smallest class.
Abstract:This document describes the annotation guidelines used to construct the Turku Paraphrase Corpus. These guidelines were developed together with the corpus annotation, revising and extending the guidelines regularly during the annotation work. Our paraphrase annotation scheme uses the base scale 1-4, where labels 1 and 2 are used for negative candidates (not paraphrases), while labels 3 and 4 are paraphrases at least in the given context if not everywhere. In addition to base labeling, the scheme is enriched with additional subcategories (flags) for categorizing different types of paraphrases inside the two positive labels, making the annotation scheme suitable for more fine-grained paraphrase categorization. The annotation scheme is used to annotate over 100,000 Finnish paraphrase pairs.
Abstract:In this paper, we present a quantitative evaluation of differences between alternative translations in a large recently released Finnish paraphrase corpus focusing in particular on non-trivial variation in translation. We combine a series of automatic steps detecting systematic variation with manual analysis to reveal regularities and identify categories of translation differences. We find the paraphrase corpus to contain highly non-trivial translation variants difficult to recognize through automatic approaches.