Abstract:Data quality is crucial for training Large Language Models (LLMs). Traditional heuristic filters often miss low-quality text or mistakenly remove valuable content. In this paper, we introduce an LLM-based line-level filtering method to enhance training data quality. We use GPT-4o mini to label a 20,000-document sample from FineWeb at the line level, allowing the model to create descriptive labels for low-quality lines. These labels are grouped into nine main categories, and we train a DeBERTa-v3 classifier to scale the filtering to a 10B-token subset of FineWeb. To test the impact of our filtering, we train GPT-2 models on both the original and the filtered datasets. The results show that models trained on the filtered data achieve higher accuracy on the HellaSwag benchmark and reach their performance targets faster, even with up to 25\% less data. This demonstrates that LLM-based line-level filtering can significantly improve data quality and training efficiency for LLMs. We release our quality-annotated dataset, FinerWeb-10BT, and the codebase to support further work in this area.
Abstract:This article explores deep learning models for the automatic identification of registers - text varieties such as news reports and discussion forums - in web-based datasets across 16 languages. Web register (or genre) identification would provide a robust solution for understanding the content of web-scale datasets, which have become crucial in computational linguistics. Despite recent advances, the potential of register classifiers on the noisy web remains largely unexplored, particularly in multilingual settings and when targeting the entire unrestricted web. We experiment with a range of deep learning models using the new Multilingual CORE corpora, which includes 16 languages annotated using a detailed, hierarchical taxonomy of 25 registers designed to cover the entire unrestricted web. Our models achieve state-of-the-art results, showing that a detailed taxonomy in a hierarchical multi-label setting can yield competitive classification performance. However, all models hit a glass ceiling at approximately 80% F1 score, which we attribute to the non-discrete nature of web registers and the inherent uncertainty in labeling some documents. By pruning ambiguous examples, we improve model performance to over 90%. Finally, multilingual models outperform monolingual ones, particularly benefiting languages with fewer training examples and smaller registers. Although a zero-shot setting decreases performance by an average of 7%, these drops are not linked to specific registers or languages. Instead, registers show surprising similarity across languages.