Abstract:This paper describes the organization and findings of AXOLOTL'24, the first multilingual explainable semantic change modeling shared task. We present new sense-annotated diachronic semantic change datasets for Finnish and Russian which were employed in the shared task, along with a surprise test-only German dataset borrowed from an existing source. The setup of AXOLOTL'24 is new to the semantic change modeling field, and involves subtasks of identifying unknown (novel) senses and providing dictionary-like definitions to these senses. The methods of the winning teams are described and compared, thus paving a path towards explainability in computational approaches to historical change of meaning.
Abstract:We use contextualized word definitions generated by large language models as semantic representations in the task of diachronic lexical semantic change detection (LSCD). In short, generated definitions are used as `senses', and the change score of a target word is retrieved by comparing their distributions in two time periods under comparison. On the material of five datasets and three languages, we show that generated definitions are indeed specific and general enough to convey a signal sufficient to rank sets of words by the degree of their semantic change over time. Our approach is on par with or outperforms prior non-supervised sense-based LSCD methods. At the same time, it preserves interpretability and allows to inspect the reasons behind a specific shift in terms of discrete definitions-as-senses. This is another step in the direction of explainable semantic change modeling.
Abstract:We present a dataset of word usage graphs (WUGs), where the existing WUGs for multiple languages are enriched with cluster labels functioning as sense definitions. They are generated from scratch by fine-tuned encoder-decoder language models. The conducted human evaluation has shown that these definitions match the existing clusters in WUGs better than the definitions chosen from WordNet by two baseline systems. At the same time, the method is straightforward to use and easy to extend to new languages. The resulting enriched datasets can be extremely helpful for moving on to explainable semantic change modeling.