Abstract:It is crucial for auditory attention decoding to classify matched and mismatched speech stimuli with corresponding EEG responses by exploring their relationship. However, existing methods often adopt two independent networks to encode speech stimulus and EEG response, which neglect the relationship between these signals from the two modalities. In this paper, we propose an independent feature enhanced crossmodal fusion model (IFE-CF) for match-mismatch classification, which leverages the fusion feature of the speech stimulus and the EEG response to achieve auditory EEG decoding. Specifically, our IFE-CF contains a crossmodal encoder to encode the speech stimulus and the EEG response with a two-branch structure connected via crossmodal attention mechanism in the encoding process, a multi-channel fusion module to fuse features of two modalities by aggregating the interaction feature obtained from the crossmodal encoder and the independent feature obtained from the speech stimulus and EEG response, and a predictor to give the matching result. In addition, the causal mask is introduced to consider the time delay of the speech-EEG pair in the crossmodal encoder, which further enhances the feature representation for match-mismatch classification. Experiments demonstrate our method's effectiveness with better classification accuracy, as compared with the baseline of the Auditory EEG Decoding Challenge 2023.
Abstract:Language-queried audio source separation (LASS) aims to separate an audio source guided by a text query, with the signal-to-distortion ratio (SDR)-based metrics being commonly used to objectively measure the quality of the separated audio. However, the SDR-based metrics require a reference signal, which is often difficult to obtain in real-world scenarios. In addition, with the SDR-based metrics, the content information of the text query is not considered effectively in LASS. This paper introduces a reference-free evaluation metric using a contrastive language-audio pretraining (CLAP) module, termed CLAPScore, which measures the semantic similarity between the separated audio and the text query. Unlike SDR, the proposed CLAPScore metric evaluates the quality of the separated audio based on the content information of the text query, without needing a reference signal. Experimental results show that the CLAPScore metric provides an effective evaluation of the semantic relevance of the separated audio to the text query, as compared to the SDR metric, offering an alternative for the performance evaluation of LASS systems.
Abstract:In the mobile internet era, the Online Food Ordering Service (OFOS) emerges as an integral component of inclusive finance owing to the convenience it brings to people. OFOS platforms offer dynamic allocation incentives to users and merchants through diverse marketing campaigns to encourage payments while maintaining the platforms' budget efficiency. Despite significant progress, the marketing domain continues to face two primary challenges: (i) how to allocate a limited budget with greater efficiency, demanding precision in predicting users' monotonic response (i.e. sensitivity) to incentives, and (ii) ensuring spatio-temporal adaptability and robustness in diverse marketing campaigns across different times and locations. To address these issues, we propose a Constrained Monotonic Adaptive Network (CoMAN) method for spatio-temporal perception within marketing pricing. Specifically, we capture spatio-temporal preferences within attribute features through two foundational spatio-temporal perception modules. To further enhance catching the user sensitivity differentials to incentives across varied times and locations, we design modules for learning spatio-temporal convexity and concavity as well as for expressing sensitivity functions. CoMAN can achieve a more efficient allocation of incentive investments during pricing, thus increasing the conversion rate and orders while maintaining budget efficiency. Extensive offline and online experimental results within our diverse marketing campaigns demonstrate the effectiveness of the proposed approach while outperforming the monotonic state-of-the-art method.
Abstract:First-shot (FS) unsupervised anomalous sound detection (ASD) is a brand-new task introduced in DCASE 2023 Challenge Task 2, where the anomalous sounds for the target machine types are unseen in training. Existing methods often rely on the availability of normal and abnormal sound data from the target machines. However, due to the lack of anomalous sound data for the target machine types, it becomes challenging when adapting the existing ASD methods to the first-shot task. In this paper, we propose a new framework for the first-shot unsupervised ASD, where metadata-assisted audio generation is used to estimate unknown anomalies, by utilising the available machine information (i.e., metadata and sound data) to fine-tune a text-to-audio generation model for generating the anomalous sounds that contain unique acoustic characteristics accounting for each different machine types. We then use the method of Time-Weighted Frequency domain audio Representation with Gaussian Mixture Model (TWFR-GMM) as the backbone to achieve the first-shot unsupervised ASD. Our proposed FS-TWFR-GMM method achieves competitive performance amongst top systems in DCASE 2023 Challenge Task 2, while requiring only 1% model parameters for detection, as validated in our experiments.
Abstract:Unsupervised anomalous sound detection (ASD) aims to detect unknown anomalous sounds of devices when only normal sound data is available. The autoencoder (AE) and self-supervised learning based methods are two mainstream methods. However, the AE-based methods could be limited as the feature learned from normal sounds can also fit with anomalous sounds, reducing the ability of the model in detecting anomalies from sound. The self-supervised methods are not always stable and perform differently, even for machines of the same type. In addition, the anomalous sound may be short-lived, making it even harder to distinguish from normal sound. This paper proposes an ID constrained Transformer-based autoencoder (IDC-TransAE) architecture with weighted anomaly score computation for unsupervised ASD. Machine ID is employed to constrain the latent space of the Transformer-based autoencoder (TransAE) by introducing a simple ID classifier to learn the difference in the distribution for the same machine type and enhance the ability of the model in distinguishing anomalous sound. Moreover, weighted anomaly score computation is introduced to highlight the anomaly scores of anomalous events that only appear for a short time. Experiments performed on DCASE 2020 Challenge Task2 development dataset demonstrate the effectiveness and superiority of our proposed method.
Abstract:Data-driven approaches hold promise for audio captioning. However, the development of audio captioning methods can be biased due to the limited availability and quality of text-audio data. This paper proposes a SynthAC framework, which leverages recent advances in audio generative models and commonly available text corpus to create synthetic text-audio pairs, thereby enhancing text-audio representation. Specifically, the text-to-audio generation model, i.e., AudioLDM, is used to generate synthetic audio signals with captions from an image captioning dataset. Our SynthAC expands the availability of well-annotated captions from the text-vision domain to audio captioning, thus enhancing text-audio representation by learning relations within synthetic text-audio pairs. Experiments demonstrate that our SynthAC framework can benefit audio captioning models by incorporating well-annotated text corpus from the text-vision domain, offering a promising solution to the challenge caused by data scarcity. Furthermore, SynthAC can be easily adapted to various state-of-the-art methods, leading to substantial performance improvements.
Abstract:Different machines can exhibit diverse frequency patterns in their emitted sound. This feature has been recently explored in anomaly sound detection and reached state-of-the-art performance. However, existing methods rely on the manual or empirical determination of the frequency filter by observing the effective frequency range in the training data, which may be impractical for general application. This paper proposes an anomalous sound detection method using self-attention-based frequency pattern analysis and spectral-temporal information fusion. Our experiments demonstrate that the self-attention module automatically and adaptively analyses the effective frequencies of a machine sound and enhances that information in the spectral feature representation. With spectral-temporal information fusion, the obtained audio feature eventually improves the anomaly detection performance on the DCASE 2020 Challenge Task 2 dataset.
Abstract:Existing contrastive learning methods for anomalous sound detection refine the audio representation of each audio sample by using the contrast between the samples' augmentations (e.g., with time or frequency masking). However, they might be biased by the augmented data, due to the lack of physical properties of machine sound, thereby limiting the detection performance. This paper uses contrastive learning to refine audio representations for each machine ID, rather than for each audio sample. The proposed two-stage method uses contrastive learning to pretrain the audio representation model by incorporating machine ID and a self-supervised ID classifier to fine-tune the learnt model, while enhancing the relation between audio features from the same ID. Experiments show that our method outperforms the state-of-the-art methods using contrastive learning or self-supervised classification in overall anomaly detection performance and stability on DCASE 2020 Challenge Task2 dataset.
Abstract:State-of-the-art audio captioning methods typically use the encoder-decoder structure with pretrained audio neural networks (PANNs) as encoders for feature extraction. However, the convolution operation used in PANNs is limited in capturing the long-time dependencies within an audio signal, thereby leading to potential performance degradation in audio captioning. This letter presents a novel method using graph attention (GraphAC) for encoder-decoder based audio captioning. In the encoder, a graph attention module is introduced after the PANNs to learn contextual association (i.e. the dependency among the audio features over different time frames) through an adjacency graph, and a top-k mask is used to mitigate the interference from noisy nodes. The learnt contextual association leads to a more effective feature representation with feature node aggregation. As a result, the decoder can predict important semantic information about the acoustic scene and events based on the contextual associations learned from the audio signal. Experimental results show that GraphAC outperforms the state-of-the-art methods with PANNs as the encoders, thanks to the incorporation of the graph attention module into the encoder for capturing the long-time dependencies within the audio signal. The source code is available at https://github.com/LittleFlyingSheep/GraphAC.
Abstract:Automated audio captioning (AAC) aims to describe audio data with captions using natural language. Most existing AAC methods adopt an encoder-decoder structure, where the attention based mechanism is a popular choice in the decoder (e.g., Transformer decoder) for predicting captions from audio features. Such attention based decoders can capture the global information from the audio features, however, their ability in extracting local information can be limited, which may lead to degraded quality in the generated captions. In this paper, we present an AAC method with an attention-free decoder, where an encoder based on PANNs is employed for audio feature extraction, and the attention-free decoder is designed to introduce local information. The proposed method enables the effective use of both global and local information from audio signals. Experiments show that our method outperforms the state-of-the-art methods with the standard attention based decoder in Task 6 of the DCASE 2021 Challenge.