Abstract:Microphone array techniques are widely used in sound source localization and smart city acoustic-based traffic monitoring, but these applications face significant challenges due to the scarcity of labeled real-world traffic audio data and the complexity and diversity of application scenarios. The DCASE Challenge's Task 10 focuses on using multi-channel audio signals to count vehicles (cars or commercial vehicles) and identify their directions (left-to-right or vice versa). In this paper, we propose a graph-enhanced dual-stream feature fusion network (GEDF-Net) for acoustic traffic monitoring, which simultaneously considers vehicle type and direction to improve detection. We propose a graph-enhanced dual-stream feature fusion strategy which consists of a vehicle type feature extraction (VTFE) branch, a vehicle direction feature extraction (VDFE) branch, and a frame-level feature fusion module to combine the type and direction feature for enhanced performance. A pre-trained model (PANNs) is used in the VTFE branch to mitigate data scarcity and enhance the type features, followed by a graph attention mechanism to exploit temporal relationships and highlight important audio events within these features. The frame-level fusion of direction and type features enables fine-grained feature representation, resulting in better detection performance. Experiments demonstrate the effectiveness of our proposed method. GEDF-Net is our submission that achieved 1st place in the DCASE 2024 Challenge Task 10.
Abstract:It is crucial for auditory attention decoding to classify matched and mismatched speech stimuli with corresponding EEG responses by exploring their relationship. However, existing methods often adopt two independent networks to encode speech stimulus and EEG response, which neglect the relationship between these signals from the two modalities. In this paper, we propose an independent feature enhanced crossmodal fusion model (IFE-CF) for match-mismatch classification, which leverages the fusion feature of the speech stimulus and the EEG response to achieve auditory EEG decoding. Specifically, our IFE-CF contains a crossmodal encoder to encode the speech stimulus and the EEG response with a two-branch structure connected via crossmodal attention mechanism in the encoding process, a multi-channel fusion module to fuse features of two modalities by aggregating the interaction feature obtained from the crossmodal encoder and the independent feature obtained from the speech stimulus and EEG response, and a predictor to give the matching result. In addition, the causal mask is introduced to consider the time delay of the speech-EEG pair in the crossmodal encoder, which further enhances the feature representation for match-mismatch classification. Experiments demonstrate our method's effectiveness with better classification accuracy, as compared with the baseline of the Auditory EEG Decoding Challenge 2023.