Abstract:Breast cancer screening, primarily conducted through mammography, is often supplemented with ultrasound for women with dense breast tissue. However, existing deep learning models analyze each modality independently, missing opportunities to integrate information across imaging modalities and time. In this study, we present Multi-modal Transformer (MMT), a neural network that utilizes mammography and ultrasound synergistically, to identify patients who currently have cancer and estimate the risk of future cancer for patients who are currently cancer-free. MMT aggregates multi-modal data through self-attention and tracks temporal tissue changes by comparing current exams to prior imaging. Trained on 1.3 million exams, MMT achieves an AUROC of 0.943 in detecting existing cancers, surpassing strong uni-modal baselines. For 5-year risk prediction, MMT attains an AUROC of 0.826, outperforming prior mammography-based risk models. Our research highlights the value of multi-modal and longitudinal imaging in cancer diagnosis and risk stratification.
Abstract:Teaching artificial intelligence (AI) is challenging. It is a fast moving field and therefore difficult to keep people updated with the state-of-the-art. Educational offerings for students are ever increasing, beyond university degree programs where AI education traditionally lay. In this paper, we present an experience report of teaching an AI course to business executives in the United Arab Emirates (UAE). Rather than focusing only on theoretical and technical aspects, we developed a course that teaches AI with a view to enabling students to understand how to incorporate it into existing business processes. We present an overview of our course, curriculum and teaching methods, and we discuss our reflections on teaching adult learners, and to students in the UAE.
Abstract:The rapid spread of COVID-19 cases in recent months has strained hospital resources, making rapid and accurate triage of patients presenting to emergency departments a necessity. Machine learning techniques using clinical data such as chest X-rays have been used to predict which patients are most at risk of deterioration. We consider the task of predicting two types of patient deterioration based on chest X-rays: adverse event deterioration (i.e., transfer to the intensive care unit, intubation, or mortality) and increased oxygen requirements beyond 6 L per day. Due to the relative scarcity of COVID-19 patient data, existing solutions leverage supervised pretraining on related non-COVID images, but this is limited by the differences between the pretraining data and the target COVID-19 patient data. In this paper, we use self-supervised learning based on the momentum contrast (MoCo) method in the pretraining phase to learn more general image representations to use for downstream tasks. We present three results. The first is deterioration prediction from a single image, where our model achieves an area under receiver operating characteristic curve (AUC) of 0.742 for predicting an adverse event within 96 hours (compared to 0.703 with supervised pretraining) and an AUC of 0.765 for predicting oxygen requirements greater than 6 L a day at 24 hours (compared to 0.749 with supervised pretraining). We then propose a new transformer-based architecture that can process sequences of multiple images for prediction and show that this model can achieve an improved AUC of 0.786 for predicting an adverse event at 96 hours and an AUC of 0.848 for predicting mortalities at 96 hours. A small pilot clinical study suggested that the prediction accuracy of our model is comparable to that of experienced radiologists analyzing the same information.
Abstract:Deep neural networks have been shown to be vulnerable to backdoor attacks, which could be easily introduced to the training set prior to model training. Recent work has focused on investigating backdoor attacks on natural images or toy datasets. Consequently, the exact impact of backdoors is not yet fully understood in complex real-world applications, such as in medical imaging where misdiagnosis can be very costly. In this paper, we explore the impact of backdoor attacks on a multi-label disease classification task using chest radiography, with the assumption that the attacker can manipulate the training dataset to execute the attack. Extensive evaluation of a state-of-the-art architecture demonstrates that by introducing images with few-pixel perturbations into the training set, an attacker can execute the backdoor successfully without having to be involved with the training procedure. A simple 3$\times$3 pixel trigger can achieve up to 1.00 Area Under the Receiver Operating Characteristic (AUROC) curve on the set of infected images. In the set of clean images, the backdoored neural network could still achieve up to 0.85 AUROC, highlighting the stealthiness of the attack. As the use of deep learning based diagnostic systems proliferates in clinical practice, we also show how explainability is indispensable in this context, as it can identify spatially localized backdoors in inference time.
Abstract:This volume represents the accepted submissions from the Machine Learning for Health (ML4H) workshop at the conference on Neural Information Processing Systems (NeurIPS) 2018, held on December 8, 2018 in Montreal, Canada.