New York University Abu Dhabi
Abstract:Industrial Control Systems (ICS) are extensively used in critical infrastructures ensuring efficient, reliable, and continuous operations. However, their increasing connectivity and addition of advanced features make them vulnerable to cyber threats, potentially leading to severe disruptions in essential services. In this context, honeypots play a vital role by acting as decoy targets within ICS networks, or on the Internet, helping to detect, log, analyze, and develop mitigations for ICS-specific cyber threats. Deploying ICS honeypots, however, is challenging due to the necessity of accurately replicating industrial protocols and device characteristics, a crucial requirement for effectively mimicking the unique operational behavior of different industrial systems. Moreover, this challenge is compounded by the significant manual effort required in also mimicking the control logic the PLC would execute, in order to capture attacker traffic aiming to disrupt critical infrastructure operations. In this paper, we propose LLMPot, a novel approach for designing honeypots in ICS networks harnessing the potency of Large Language Models (LLMs). LLMPot aims to automate and optimize the creation of realistic honeypots with vendor-agnostic configurations, and for any control logic, aiming to eliminate the manual effort and specialized knowledge traditionally required in this domain. We conducted extensive experiments focusing on a wide array of parameters, demonstrating that our LLM-based approach can effectively create honeypot devices implementing different industrial protocols and diverse control logic.
Abstract:As the use of Large Language Models (LLMs) in text generation tasks proliferates, concerns arise over their potential to compromise academic integrity. The education sector currently tussles with distinguishing student-authored homework assignments from AI-generated ones. This paper addresses the challenge by introducing HowkGPT, designed to identify homework assignments generated by AI. HowkGPT is built upon a dataset of academic assignments and accompanying metadata [17] and employs a pretrained LLM to compute perplexity scores for student-authored and ChatGPT-generated responses. These scores then assist in establishing a threshold for discerning the origin of a submitted assignment. Given the specificity and contextual nature of academic work, HowkGPT further refines its analysis by defining category-specific thresholds derived from the metadata, enhancing the precision of the detection. This study emphasizes the critical need for effective strategies to uphold academic integrity amidst the growing influence of LLMs and provides an approach to ensuring fair and accurate grading in educational institutions.
Abstract:Federated Learning (FL) enables collaborative deep learning training across multiple participants without exposing sensitive personal data. However, the distributed nature of FL and the unvetted participants' data makes it vulnerable to backdoor attacks. In these attacks, adversaries inject malicious functionality into the centralized model during training, leading to intentional misclassifications for specific adversary-chosen inputs. While previous research has demonstrated successful injections of persistent backdoors in FL, the persistence also poses a challenge, as their existence in the centralized model can prompt the central aggregation server to take preventive measures to penalize the adversaries. Therefore, this paper proposes a methodology that enables adversaries to effectively remove backdoors from the centralized model upon achieving their objectives or upon suspicion of possible detection. The proposed approach extends the concept of machine unlearning and presents strategies to preserve the performance of the centralized model and simultaneously prevent over-unlearning of information unrelated to backdoor patterns, making the adversaries stealthy while removing backdoors. To the best of our knowledge, this is the first work that explores machine unlearning in FL to remove backdoors to the benefit of adversaries. Exhaustive evaluation considering image classification scenarios demonstrates the efficacy of the proposed method in efficient backdoor removal from the centralized model, injected by state-of-the-art attacks across multiple configurations.
Abstract:Machine Learning (ML) has recently shown tremendous success in modeling various healthcare prediction tasks, ranging from disease diagnosis and prognosis to patient treatment. Due to the sensitive nature of medical data, privacy must be considered along the entire ML pipeline, from model training to inference. In this paper, we conduct a review of recent literature concerning Privacy-Preserving Machine Learning (PPML) for healthcare. We primarily focus on privacy-preserving training and inference-as-a-service, and perform a comprehensive review of existing trends, identify challenges, and discuss opportunities for future research directions. The aim of this review is to guide the development of private and efficient ML models in healthcare, with the prospects of translating research efforts into real-world settings.
Abstract:Deep Reinforcement Learning (DRL) enhances the efficiency of Autonomous Vehicles (AV), but also makes them susceptible to backdoor attacks that can result in traffic congestion or collisions. Backdoor functionality is typically incorporated by contaminating training datasets with covert malicious data to maintain high precision on genuine inputs while inducing the desired (malicious) outputs for specific inputs chosen by adversaries. Current defenses against backdoors mainly focus on image classification using image-based features, which cannot be readily transferred to the regression task of DRL-based AV controllers since the inputs are continuous sensor data, i.e., the combinations of velocity and distance of AV and its surrounding vehicles. Our proposed method adds well-designed noise to the input to neutralize backdoors. The approach involves learning an optimal smoothing (noise) distribution to preserve the normal functionality of genuine inputs while neutralizing backdoors. By doing so, the resulting model is expected to be more resilient against backdoor attacks while maintaining high accuracy on genuine inputs. The effectiveness of the proposed method is verified on a simulated traffic system based on a microscopic traffic simulator, where experimental results showcase that the smoothed traffic controller can neutralize all trigger samples and maintain the performance of relieving traffic congestion
Abstract:Machine Learning (ML) alleviates the challenges of high-dimensional data analysis and improves decision making in critical applications like healthcare. Effective cancer type from high-dimensional genetic mutation data can be useful for cancer diagnosis and treatment, if the distinguishable patterns between cancer types are identified. At the same time, analysis of high-dimensional data is computationally expensive and is often outsourced to cloud services. Privacy concerns in outsourced ML, especially in the field of genetics, motivate the use of encrypted computation, like Homomorphic Encryption (HE). But restrictive overheads of encrypted computation deter its usage. In this work, we explore the challenges of privacy preserving cancer detection using a real-world dataset consisting of more than 2 million genetic information for several cancer types. Since the data is inherently high-dimensional, we explore smaller ML models for cancer prediction to enable fast inference in the privacy preserving domain. We develop a solution for privacy preserving cancer inference which first leverages the domain knowledge on somatic mutations to efficiently encode genetic mutations and then uses statistical tests for feature selection. Our logistic regression model, built using our novel encoding scheme, achieves 0.98 micro-average area under curve with 13% higher test accuracy than similar studies. We exhaustively test our model's predictive capabilities by analyzing the genes used by the model. Furthermore, we propose a fast matrix multiplication algorithm that can efficiently handle high-dimensional data. Experimental results show that, even with 40,000 features, our proposed matrix multiplication algorithm can speed up concurrent inference of multiple individuals by approximately 10x and inference of a single individual by approximately 550x, in comparison to standard matrix multiplication.
Abstract:Backdoor attacks impose a new threat in Deep Neural Networks (DNNs), where a backdoor is inserted into the neural network by poisoning the training dataset, misclassifying inputs that contain the adversary trigger. The major challenge for defending against these attacks is that only the attacker knows the secret trigger and the target class. The problem is further exacerbated by the recent introduction of "Hidden Triggers", where the triggers are carefully fused into the input, bypassing detection by human inspection and causing backdoor identification through anomaly detection to fail. To defend against such imperceptible attacks, in this work we systematically analyze how representations, i.e., the set of neuron activations for a given DNN when using the training data as inputs, are affected by backdoor attacks. We propose PiDAn, an algorithm based on coherence optimization purifying the poisoned data. Our analysis shows that representations of poisoned data and authentic data in the target class are still embedded in different linear subspaces, which implies that they show different coherence with some latent spaces. Based on this observation, the proposed PiDAn algorithm learns a sample-wise weight vector to maximize the projected coherence of weighted samples, where we demonstrate that the learned weight vector has a natural "grouping effect" and is distinguishable between authentic data and poisoned data. This enables the systematic detection and mitigation of backdoor attacks. Based on our theoretical analysis and experimental results, we demonstrate the effectiveness of PiDAn in defending against backdoor attacks that use different settings of poisoned samples on GTSRB and ILSVRC2012 datasets. Our PiDAn algorithm can detect more than 90% infected classes and identify 95% poisoned samples.
Abstract:Industrial Control Systems (ICS) have played a catalytic role in enabling the 4th Industrial Revolution. ICS devices like Programmable Logic Controllers (PLCs), automate, monitor and control critical processes in industrial, energy and commercial environments. The convergence of traditional Operational Technology (OT) with Information Technology (IT) has opened a new and unique threat landscape. This has inspired defense research that focuses heavily on Machine Learning (ML) based anomaly detection methods that run on external IT hardware which means an increase in costs and the further expansion of the threat landscape. To remove this requirement, we introduce the ICS Machine Learning inference framework (ICSML) which enables the execution of ML models natively on the PLC. ICSML is implemented in IEC 61131-3 code and works around the limitations imposed by the domain-specific languages, providing a complete set of components for the creation of fully fledged ML models in a way similar to established ML frameworks. We then demonstrate a complete end-to-end methodology for creating ICS ML models using an external framework for training and ICSML for the PLC implementation. To evaluate our contributions we run a series of benchmarks studying memory and performance and compare our solution to the TFLite inference framework. Finally, to demonstrate the abilities of ICSML and to verify its non-intrusive nature, we develop and evaluate a case study of a real defense for process aware attacks against a Multi Stage Flash (MSF) desalination plant.
Abstract:Machine Learning (ML) has achieved unprecedented performance in several applications including image, speech, text, and data analysis. Use of ML to understand underlying patterns in gene mutations (genomics) has far-reaching results, not only in overcoming diagnostic pitfalls, but also in designing treatments for life-threatening diseases like cancer. Success and sustainability of ML algorithms depends on the quality and diversity of data collected and used for training. Under-representation of groups (ethnic groups, gender groups, etc.) in such a dataset can lead to inaccurate predictions for certain groups, which can further exacerbate systemic discrimination issues. In this work, we propose TRAPDOOR, a methodology for identification of biased datasets by repurposing a technique that has been mostly proposed for nefarious purposes: Neural network backdoors. We consider a typical collaborative learning setting of the genomics supply chain, where data may come from hospitals, collaborative projects, or research institutes to a central cloud without awareness of bias against a sensitive group. In this context, we develop a methodology to leak potential bias information of the collective data without hampering the genuine performance using ML backdooring catered for genomic applications. Using a real-world cancer dataset, we analyze the dataset with the bias that already existed towards white individuals and also introduced biases in datasets artificially, and our experimental result show that TRAPDOOR can detect the presence of dataset bias with 100% accuracy, and furthermore can also extract the extent of bias by recovering the percentage with a small error.
Abstract:Deep neural networks have been shown to be vulnerable to backdoor attacks, which could be easily introduced to the training set prior to model training. Recent work has focused on investigating backdoor attacks on natural images or toy datasets. Consequently, the exact impact of backdoors is not yet fully understood in complex real-world applications, such as in medical imaging where misdiagnosis can be very costly. In this paper, we explore the impact of backdoor attacks on a multi-label disease classification task using chest radiography, with the assumption that the attacker can manipulate the training dataset to execute the attack. Extensive evaluation of a state-of-the-art architecture demonstrates that by introducing images with few-pixel perturbations into the training set, an attacker can execute the backdoor successfully without having to be involved with the training procedure. A simple 3$\times$3 pixel trigger can achieve up to 1.00 Area Under the Receiver Operating Characteristic (AUROC) curve on the set of infected images. In the set of clean images, the backdoored neural network could still achieve up to 0.85 AUROC, highlighting the stealthiness of the attack. As the use of deep learning based diagnostic systems proliferates in clinical practice, we also show how explainability is indispensable in this context, as it can identify spatially localized backdoors in inference time.