Abstract:Multimodal fusion leverages information across modalities to learn better feature representations with the goal of improving performance in fusion-based tasks. However, multimodal datasets, especially in medical settings, are typically smaller than their unimodal counterparts, which can impede the performance of multimodal models. Additionally, the increase in the number of modalities is often associated with an overall increase in the size of the multimodal network, which may be undesirable in medical use cases. Utilizing smaller unimodal encoders may lead to sub-optimal performance, particularly when dealing with high-dimensional clinical data. In this paper, we propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach based on knowledge distillation that transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student. The teacher models consist of unimodal networks, allowing the student to learn from diverse representations. MIND employs multi-head joint fusion models, as opposed to single-head models, enabling the use of unimodal encoders in the case of unimodal samples without requiring imputation or masking of absent modalities. As a result, MIND generates an optimized multimodal model, enhancing both multimodal and unimodal representations. It can also be leveraged to balance multimodal learning during training. We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images. Additionally, we assess the generalizability of the MIND framework on three non-medical multimodal multiclass datasets. Experimental results demonstrate that MIND enhances the performance of the smaller multimodal network across all five tasks, as well as various fusion methods and multimodal architectures, compared to state-of-the-art baselines.
Abstract:Self-supervised learning methods for medical images primarily rely on the imaging modality during pretraining. While such approaches deliver promising results, they do not leverage associated patient or scan information collected within Electronic Health Records (EHR). Here, we propose to incorporate EHR data during self-supervised pretraining with a Masked Siamese Network (MSN) to enhance the quality of chest X-ray representations. We investigate three types of EHR data, including demographic, scan metadata, and inpatient stay information. We evaluate our approach on three publicly available chest X-ray datasets, MIMIC-CXR, CheXpert, and NIH-14, using two vision transformer (ViT) backbones, specifically ViT-Tiny and ViT-Small. In assessing the quality of the representations via linear evaluation, our proposed method demonstrates significant improvement compared to vanilla MSN and state-of-the-art self-supervised learning baselines. Our work highlights the potential of EHR-enhanced self-supervised pre-training for medical imaging. The code is publicly available at: https://github.com/nyuad-cai/CXR-EHR-MSN
Abstract:Machine Learning (ML) has recently shown tremendous success in modeling various healthcare prediction tasks, ranging from disease diagnosis and prognosis to patient treatment. Due to the sensitive nature of medical data, privacy must be considered along the entire ML pipeline, from model training to inference. In this paper, we conduct a review of recent literature concerning Privacy-Preserving Machine Learning (PPML) for healthcare. We primarily focus on privacy-preserving training and inference-as-a-service, and perform a comprehensive review of existing trends, identify challenges, and discuss opportunities for future research directions. The aim of this review is to guide the development of private and efficient ML models in healthcare, with the prospects of translating research efforts into real-world settings.