Abstract:Tip-growing eversion robots are renowned for their ability to access remote spaces through narrow passages. However, achieving reliable navigation remains a significant challenge. Existing solutions often rely on artificial muscles integrated into the robot body or active tip-steering mechanisms. While effective, these additions introduce structural complexity and compromise the defining advantages of eversion robots: their inherent softness and compliance. In this paper, we propose a passive approach to reduce bending stiffness by purposefully introducing buckling points along the robot's outer wall. We achieve this by integrating inextensible diameter-reducing circumferential bands at regular intervals along the robot body facilitating forward motion through tortuous, obstacle cluttered paths. Rather than relying on active steering, our approach leverages the robot's natural interaction with the environment, allowing for smooth, compliant navigation. We present a Cosserat rod-based mathematical model to quantify this behavior, capturing the local stiffness reductions caused by the constricting bands and their impact on global bending mechanics. Experimental results demonstrate that these bands reduce the robot's stiffness when bent at the tip by up to 91 percent, enabling consistent traversal of 180 degree bends with a bending radius of as low as 25 mm-notably lower than the 35 mm achievable by standard eversion robots under identical conditions. The feasibility of the proposed method is further demonstrated through a case study in a colon phantom. By significantly improving maneuverability without sacrificing softness or increasing mechanical complexity, this approach expands the applicability of eversion robots in highly curved pathways, whether in relation to pipe inspection or medical procedures such as colonoscopy.
Abstract:The incorporation of advanced control algorithms into prosthetic hands significantly enhances their ability to replicate the intricate motions of a human hand. This work introduces a model-based controller that combines an Artificial Neural Network (ANN) approach with a Sliding Mode Controller (SMC) designed for a tendon-driven soft continuum wrist integrated into a prosthetic hand known as "PRISMA HAND II". Our research focuses on developing a controller that provides a fast dynamic response with reduced computational effort during wrist motions. The proposed controller consists of an ANN for computing bending angles together with an SMC to regulate tendon forces. Kinematic and dynamic models of the wrist are formulated using the Piece-wise Constant Curvature (PCC) hypothesis. The performance of the proposed controller is compared with other control strategies developed for the same wrist. Simulation studies and experimental validations of the fabricated wrist using the controller are included in the paper.
Abstract:Development of dexterous robotic joints is essential for advancing manipulation capabilities in robotic systems. This paper presents the design and implementation of a tendon-driven robotic wrist joint together with an efficient Sliding Mode Controller (SMC) for precise motion control. The wrist mechanism is modeled using a Timoshenko-based approach to accurately capture its kinematic and dynamic properties, which serve as the foundation for tendon force calculations within the controller. The proposed SMC is designed to deliver fast dynamic response and computational efficiency, enabling accurate trajectory tracking under varying operating conditions. The effectiveness of the controller is validated through comparative analyses with existing controllers for similar wrist mechanisms. The proposed SMC demonstrates superior performance in both simulation and experimental studies. The Root Mean Square Error (RMSE) in simulation is approximately 1.67e-2 radians, while experimental validation yields an error of 0.2 radians. Additionally, the controller achieves a settling time of less than 3 seconds and a steady-state error below 1e-1 radians, consistently observed across both simulation and experimental evaluations. Comparative analyses confirm that the developed SMC surpasses alternative control strategies in motion accuracy, rapid convergence, and steady-state precision. This work establishes a foundation for future exploration of tendon-driven wrist mechanisms and control strategies in robotic applications.
Abstract:The functionality and natural motion of prosthetic hands remain limited by the challenges in controlling compliant wrist mechanisms. Current control strategies often lack adaptability and incur high computational costs, which impedes real-time deployment in assistive robotics. To address this gap, this study presents a computationally efficient Neural Network (NN)-based Model Reference Adaptive Controller (MRAC) for a tendon-driven soft continuum wrist integrated with a prosthetic hand. The dynamic modeling of the wrist is formulated using Timoshenko beam theory, capturing both shear and bending deformations. The proposed NN-MRAC estimates the required tendon forces from deflection errors and minimizes deviation from a reference model through online adaptation. Simulation results demonstrate improved precision with a root mean square error (RMSE) of $6.14 \times 10^{-4}$ m and a settling time of $3.2$s. Experimental validations confirm real-time applicability, with an average RMSE of $5.66 \times 10^{-3}$ m, steady-state error of $8.05 \times 10^{-3}$ m, and settling time of $1.58$ s. These results highlight the potential of the controller to enhance motion accuracy and responsiveness in soft prosthetic systems, thereby advancing the integration of adaptive intelligent control in wearable assistive devices.




Abstract:Handling non-rigid objects using robot hands necessities a framework that does not only incorporate human-level dexterity and cognition but also the multi-sensory information and system dynamics for robust and fine interactions. In this research, our previously developed kernelized synergies framework, inspired from human behaviour on reusing same subspace for grasping and manipulation, is augmented with visuo-tactile perception for autonomous and flexible adaptation to unknown objects. To detect objects and estimate their poses, a simplified visual pipeline using RANSAC algorithm with Euclidean clustering and SVM classifier is exploited. To modulate interaction efforts while grasping and manipulating non-rigid objects, the tactile feedback using T40S shokac chip sensor, generating 3D force information, is incorporated. Moreover, different kernel functions are examined in the kernelized synergies framework, to evaluate its performance and potential against task reproducibility, execution, generalization and synergistic re-usability. Experiments performed with robot arm-hand system validates the capability and usability of upgraded framework on stably grasping and dexterously manipulating the non-rigid objects.




Abstract:Deformable object manipulation (DOM) is an emerging research problem in robotics. The ability to manipulate deformable objects endows robots with higher autonomy and promises new applications in the industrial, services, and healthcare sectors. However, compared to rigid object manipulation, the manipulation of deformable objects is considerably more complex and is still an open research problem. Tackling the challenges in DOM demands breakthroughs in almost all aspects of robotics, namely hardware design, sensing, deformation modeling, planning, and control. In this article, we highlight the main challenges that arise by considering deformation and review recent advances in each sub-field. A particular focus of our paper lies in the discussions of these challenges and proposing promising directions of research.




Abstract:Enabling robots to work in close proximity with humans necessitates to employ not only multi-sensory information for coordinated and autonomous interactions but also a control framework that ensures adaptive and flexible collaborative behavior. Such a control framework needs to integrate accuracy and repeatability of robots with cognitive ability and adaptability of humans for co-manipulation. In this regard, an intuitive stack of tasks (iSOT) formulation is proposed, that defines the robots actions based on human ergonomics and task progress. The framework is augmented with visuo-tactile perception for flexible interaction and autonomous adaption. The visual information using depth cameras, monitors and estimates the object pose and human arm gesture while the tactile feedback provides exploration skills for maintaining the desired contact to avoid slippage. Experiments conducted on robot system with human partnership for assembly and disassembly tasks confirm the effectiveness and usability of proposed framework.




Abstract:Humans in contrast to robots are excellent in performing fine manipulation tasks owing to their remarkable dexterity and sensorimotor organization. Enabling robots to acquire such capabilities, necessitates a framework that not only replicates the human behaviour but also integrates the multi-sensory information for autonomous object interaction. To address such limitations, this research proposes to augment the previously developed kernelized synergies framework with visual perception to automatically adapt to the unknown objects. The kernelized synergies, inspired from humans, retain the same reduced subspace for object grasping and manipulation. To detect object in the scene, a simplified perception pipeline is used that leverages the RANSAC algorithm with Euclidean clustering and SVM for object segmentation and recognition respectively. Further, the comparative analysis of kernelized synergies with other state of art approaches is made to confirm their flexibility and effectiveness on the robotic manipulation tasks. The experiments conducted on the robot hand confirm the robustness of modified kernelized synergies framework against the uncertainties related to the perception of environment.




Abstract:In this paper, we present an impedance control design for multi-variable linear and nonlinear robotic systems. The control design considers force and state feedback to improve the performance of the closed loop. Simultaneous feedback of forces and states allows the controller for an extra degree of freedom to approximate the desired impedance port behaviour. A numerical analysis is used to demonstrate the desired impedance closed-loop behaviour.




Abstract:Manipulation in contrast to grasping is a trajectorial task that needs to use dexterous hands. Improving the dexterity of robot hands, increases the controller complexity and thus requires to use the concept of postural synergies. Inspired from postural synergies, this research proposes a new framework called kernelized synergies that focuses on the re-usability of the same subspace for precision grasping and dexterous manipulation. In this work, the computed subspace of postural synergies; parameterized by probabilistic movement primitives, is treated with kernel to preserve its grasping and manipulation characteristics and allows its reuse for new objects. The grasp stability of the proposed framework is assessed with a force closure quality index. For performance evaluation, the proposed framework is tested on two different simulated robot hand models using the Syngrasp toolbox and experimentally, four complex grasping and manipulation tasks are performed and reported. The results confirm the hand agnostic approach of the proposed framework and its generalization to distinct objects irrespective of their shape and size.