Abstract:The recent explosion of performance of large language models (LLMs) has changed the field of Natural Language Processing (NLP) more abruptly and seismically than any other shift in the field's 80-year history. This has resulted in concerns that the field will become homogenized and resource-intensive. The new status quo has put many academic researchers, especially PhD students, at a disadvantage. This paper aims to define a new NLP playground by proposing 20+ PhD-dissertation-worthy research directions, covering theoretical analysis, new and challenging problems, learning paradigms, and interdisciplinary applications.
Abstract:In the last five years, there has been a significant focus in Natural Language Processing (NLP) on developing larger Pretrained Language Models (PLMs) and introducing benchmarks such as SuperGLUE and SQuAD to measure their abilities in language understanding, reasoning, and reading comprehension. These PLMs have achieved impressive results on these benchmarks, even surpassing human performance in some cases. This has led to claims of superhuman capabilities and the provocative idea that certain tasks have been solved. In this position paper, we take a critical look at these claims and ask whether PLMs truly have superhuman abilities and what the current benchmarks are really evaluating. We show that these benchmarks have serious limitations affecting the comparison between humans and PLMs and provide recommendations for fairer and more transparent benchmarks.
Abstract:To ensure readability, text is often written and presented with due formatting. These text formatting devices help the writer to effectively convey the narrative. At the same time, these help the readers pick up the structure of the discourse and comprehend the conveyed information. There have been a number of linguistic theories on discourse structure of text. However, these theories only consider unformatted text. Multimedia text contains rich formatting features which can be leveraged for various NLP tasks. In this paper, we study some of these discourse features in multimedia text and what communicative function they fulfil in the context. We examine how these multimedia discourse features can be used to improve an information extraction system. We show that the discourse and text layout features provide information that is complementary to lexical semantic information commonly used for information extraction. As a case study, we use these features to harvest structured subject knowledge of geometry from textbooks. We show that the harvested structured knowledge can be used to improve an existing solver for geometry problems, making it more accurate as well as more explainable.