Shanghai Jiao Tong University
Abstract:Optical flow captures the motion of pixels in an image sequence over time, providing information about movement, depth, and environmental structure. Flying insects utilize this information to navigate and avoid obstacles, allowing them to execute highly agile maneuvers even in complex environments. Despite its potential, autonomous flying robots have yet to fully leverage this motion information to achieve comparable levels of agility and robustness. Challenges of control from optical flow include extracting accurate optical flow at high speeds, handling noisy estimation, and ensuring robust performance in complex environments. To address these challenges, we propose a novel end-to-end system for quadrotor obstacle avoidance using monocular optical flow. We develop an efficient differentiable simulator coupled with a simplified quadrotor model, allowing our policy to be trained directly through first-order gradient optimization. Additionally, we introduce a central flow attention mechanism and an action-guided active sensing strategy that enhances the policy's focus on task-relevant optical flow observations to enable more responsive decision-making during flight. Our system is validated both in simulation and the real world using an FPV racing drone. Despite being trained in a simple environment in simulation, our system is validated both in simulation and the real world using an FPV racing drone. Despite being trained in a simple environment in simulation, our system demonstrates agile and robust flight in various unknown, cluttered environments in the real world at speeds of up to 6m/s.
Abstract:We present VisFly, a quadrotor simulator designed to efficiently train vision-based flight policies using reinforcement learning algorithms. VisFly offers a user-friendly framework and interfaces, leveraging Habitat-Sim's rendering engines to achieve frame rates exceeding 10,000 frames per second for rendering motion and sensor data. The simulator incorporates differentiable physics and seamlessly integrates with the Gym environment, facilitating the straightforward implementation of various learning algorithms. It supports the direct import of all open-source scene datasets compatible with Habitat-Sim, enabling training on diverse real-world environments and ensuring fair comparisons of learned flight policies. We also propose a general policy architecture for three typical flight tasks relying on visual observations, which have been validated in our simulator using reinforcement learning. The simulator will be available at [https://github.com/SJTU-ViSYS/VisFly].
Abstract:Swarm navigation in cluttered environments is a grand challenge in robotics. This work combines deep learning with first-principle physics through differentiable simulation to enable autonomous navigation of multiple aerial robots through complex environments at high speed. Our approach optimizes a neural network control policy directly by backpropagating loss gradients through the robot simulation using a simple point-mass physics model and a depth rendering engine. Despite this simplicity, our method excels in challenging tasks for both multi-agent and single-agent applications with zero-shot sim-to-real transfer. In multi-agent scenarios, our system demonstrates self-organized behavior, enabling autonomous coordination without communication or centralized planning - an achievement not seen in existing traditional or learning-based methods. In single-agent scenarios, our system achieves a 90% success rate in navigating through complex environments, significantly surpassing the 60% success rate of the previous state-of-the-art approach. Our system can operate without state estimation and adapt to dynamic obstacles. In real-world forest environments, it navigates at speeds up to 20 m/s, doubling the speed of previous imitation learning-based solutions. Notably, all these capabilities are deployed on a budget-friendly $21 computer, costing less than 5% of a GPU-equipped board used in existing systems. Video demonstrations are available at https://youtu.be/LKg9hJqc2cc.
Abstract:Accurate and dense depth estimation with stereo cameras and LiDAR is an important task for automatic driving and robotic perception. While sparse hints from LiDAR points have improved cost aggregation in stereo matching, their effectiveness is limited by the low density and non-uniform distribution. To address this issue, we propose a novel stereo-LiDAR depth estimation network with Semi-Dense hint Guidance, named SDG-Depth. Our network includes a deformable propagation module for generating a semi-dense hint map and a confidence map by propagating sparse hints using a learned deformable window. These maps then guide cost aggregation in stereo matching. To reduce the triangulation error in depth recovery from disparity, especially in distant regions, we introduce a disparity-depth conversion module. Our method is both accurate and efficient. The experimental results on benchmark tests show its superior performance. Our code is available at https://github.com/SJTU-ViSYS/SDG-Depth.
Abstract:We introduce Ground-Fusion, a low-cost sensor fusion simultaneous localization and mapping (SLAM) system for ground vehicles. Our system features efficient initialization, effective sensor anomaly detection and handling, real-time dense color mapping, and robust localization in diverse environments. We tightly integrate RGB-D images, inertial measurements, wheel odometer and GNSS signals within a factor graph to achieve accurate and reliable localization both indoors and outdoors. To ensure successful initialization, we propose an efficient strategy that comprises three different methods: stationary, visual, and dynamic, tailored to handle diverse cases. Furthermore, we develop mechanisms to detect sensor anomalies and degradation, handling them adeptly to maintain system accuracy. Our experimental results on both public and self-collected datasets demonstrate that Ground-Fusion outperforms existing low-cost SLAM systems in corner cases. We release the code and datasets at https://github.com/SJTU-ViSYS/Ground-Fusion.
Abstract:We propose a novel visual SLAM method that integrates text objects tightly by treating them as semantic features via fully exploring their geometric and semantic prior. The text object is modeled as a texture-rich planar patch whose semantic meaning is extracted and updated on the fly for better data association. With the full exploration of locally planar characteristics and semantic meaning of text objects, the SLAM system becomes more accurate and robust even under challenging conditions such as image blurring, large viewpoint changes, and significant illumination variations (day and night). We tested our method in various scenes with the ground truth data. The results show that integrating texture features leads to a more superior SLAM system that can match images across day and night. The reconstructed semantic 3D text map could be useful for navigation and scene understanding in robotic and mixed reality applications. Our project page: https://github.com/SJTU-ViSYS/TextSLAM .
Abstract:Integrating Global Navigation Satellite Systems (GNSS) in Simultaneous Localization and Mapping (SLAM) systems draws increasing attention to a global and continuous localization solution. Nonetheless, in dense urban environments, GNSS-based SLAM systems will suffer from the Non-Line-Of-Sight (NLOS) measurements, which might lead to a sharp deterioration in localization results. In this paper, we propose to detect the sky area from the up-looking camera to improve GNSS measurement reliability for more accurate position estimation. We present Sky-GVINS: a sky-aware GNSS-Visual-Inertial system based on a recent work called GVINS. Specifically, we adopt a global threshold method to segment the sky regions and non-sky regions in the fish-eye sky-pointing image and then project satellites to the image using the geometric relationship between satellites and the camera. After that, we reject satellites in non-sky regions to eliminate NLOS signals. We investigated various segmentation algorithms for sky detection and found that the Otsu algorithm reported the highest classification rate and computational efficiency, despite the algorithm's simplicity and ease of implementation. To evaluate the effectiveness of Sky-GVINS, we built a ground robot and conducted extensive real-world experiments on campus. Experimental results show that our method improves localization accuracy in both open areas and dense urban environments compared to the baseline method. Finally, we also conduct a detailed analysis and point out possible further directions for future research. For detailed information, visit our project website at https://github.com/SJTU-ViSYS/Sky-GVINS.
Abstract:We introduce a lightweight network to improve descriptors of keypoints within the same image. The network takes the original descriptors and the geometric properties of keypoints as the input, and uses an MLP-based self-boosting stage and a Transformer-based cross-boosting stage to enhance the descriptors. The enhanced descriptors can be either real-valued or binary ones. We use the proposed network to boost both hand-crafted (ORB, SIFT) and the state-of-the-art learning-based descriptors (SuperPoint, ALIKE) and evaluate them on image matching, visual localization, and structure-from-motion tasks. The results show that our method significantly improves the performance of each task, particularly in challenging cases such as large illumination changes or repetitive patterns. Our method requires only 3.2ms on desktop GPU and 27ms on embedded GPU to process 2000 features, which is fast enough to be applied to a practical system.
Abstract:We introduce M2DGR: a novel large-scale dataset collected by a ground robot with a full sensor-suite including six fish-eye and one sky-pointing RGB cameras, an infrared camera, an event camera, a Visual-Inertial Sensor (VI-sensor), an inertial measurement unit (IMU), a LiDAR, a consumer-grade Global Navigation Satellite System (GNSS) receiver and a GNSS-IMU navigation system with real-time kinematic (RTK) signals. All those sensors were well-calibrated and synchronized, and their data were recorded simultaneously. The ground truth trajectories were obtained by the motion capture device, a laser 3D tracker, and an RTK receiver. The dataset comprises 36 sequences (about 1TB) captured in diverse scenarios including both indoor and outdoor environments. We evaluate state-of-the-art SLAM algorithms on M2DGR. Results show that existing solutions perform poorly in some scenarios. For the benefit of the research community, we make the dataset and tools public. The webpage of our project is https://github.com/SJTU-ViSYS/M2DGR.
Abstract:We address the problem of estimating the poses of multiple instances of the source point cloud within a target point cloud. Existing solutions require sampling a lot of hypotheses to detect possible instances and reject the outliers, whose robustness and efficiency degrade notably when the number of instances and outliers increase. We propose to directly group the set of noisy correspondences into different clusters based on a distance invariance matrix. The instances and outliers are automatically identified through clustering. Our method is robust and fast. We evaluated our method on both synthetic and real-world datasets. The results show that our approach can correctly register up to 20 instances with an F1 score of 90.46% in the presence of 70% outliers, which performs significantly better and at least 10x faster than existing methods