Abstract:In both 2016 and 2018, a census of the highly-endangered Grevy's zebra population was enabled by the Great Grevy's Rally (GGR), a citizen science event that produces population estimates via expert and algorithmic curation of volunteer-captured images. A complementary, scalable, and long-term Grevy's population monitoring approach involves deploying camera trap networks. However, in both scenarios, a substantial majority of zebra images are not usable for individual identification due to poor in-the-wild imaging conditions; camera trap images in particular present high rates of occlusion and high spatio-temporal similarity within image bursts. Our proposed filtering pipeline incorporates animal detection, species identification, viewpoint estimation, quality evaluation, and temporal subsampling to obtain individual crops suitable for re-ID, which are subsequently curated by the LCA decision management algorithm. Our method processed images taken during GGR-16 and GGR-18 in Meru County, Kenya, into 4,142 highly-comparable annotations, requiring only 120 contrastive human decisions to produce a population estimate within 4.6% of the ground-truth count. Our method also efficiently processed 8.9M unlabeled camera trap images from 70 cameras at the Mpala Research Centre in Laikipia County, Kenya over two years into 685 encounters of 173 individuals, requiring only 331 contrastive human decisions.
Abstract:We present a novel usage of Transformers to make image classification interpretable. Unlike mainstream classifiers that wait until the last fully-connected layer to incorporate class information to make predictions, we investigate a proactive approach, asking each class to search for itself in an image. We realize this idea via a Transformer encoder-decoder inspired by DEtection TRansformer (DETR). We learn ``class-specific'' queries (one for each class) as input to the decoder, enabling each class to localize its patterns in an image via cross-attention. We name our approach INterpretable TRansformer (INTR), which is fairly easy to implement and exhibits several compelling properties. We show that INTR intrinsically encourages each class to attend distinctively; the cross-attention weights thus provide a faithful interpretation of the prediction. Interestingly, via ``multi-head'' cross-attention, INTR could identify different ``attributes'' of a class, making it particularly suitable for fine-grained classification and analysis, which we demonstrate on eight datasets. Our code and pre-trained model are publicly accessible at https://github.com/Imageomics/INTR.