Abstract:During 2023, two interesting results were proven about the limit behavior of game dynamics: First, it was shown that there is a game for which no dynamics converges to the Nash equilibria. Second, it was shown that the sink equilibria of a game adequately capture the limit behavior of natural game dynamics. These two results have created a need and opportunity to articulate a principled computational theory of the meaning of the game that is based on game dynamics. Given any game in normal form, and any prior distribution of play, we study the problem of computing the asymptotic behavior of a class of natural dynamics called the noisy replicator dynamics as a limit distribution over the sink equilibria of the game. When the prior distribution has pure strategy support, we prove this distribution can be computed efficiently, in near-linear time to the size of the best-response graph. When the distribution can be sampled -- for example, if it is the uniform distribution over all mixed strategy profiles -- we show through experiments that the limit distribution of reasonably large games can be estimated quite accurately through sampling and simulation.
Abstract:In repeated interaction problems with adaptive agents, our objective often requires anticipating and optimizing over the space of possible agent responses. We show that many problems of this form can be cast as instances of online (nonlinear) control which satisfy \textit{local controllability}, with convex losses over a bounded state space which encodes agent behavior, and we introduce a unified algorithmic framework for tractable regret minimization in such cases. When the instance dynamics are known but otherwise arbitrary, we obtain oracle-efficient $O(\sqrt{T})$ regret by reduction to online convex optimization, which can be made computationally efficient if dynamics are locally \textit{action-linear}. In the presence of adversarial disturbances to the state, we give tight bounds in terms of either the cumulative or per-round disturbance magnitude (for \textit{strongly} or \textit{weakly} locally controllable dynamics, respectively). Additionally, we give sublinear regret results for the cases of unknown locally action-linear dynamics as well as for the bandit feedback setting. Finally, we demonstrate applications of our framework to well-studied problems including performative prediction, recommendations for adaptive agents, adaptive pricing of real-valued goods, and repeated gameplay against no-regret learners, directly yielding extensions beyond prior results in each case.
Abstract:Story Visualization (SV) is a challenging generative vision task, that requires both visual quality and consistency between different frames in generated image sequences. Previous approaches either employ some kind of memory mechanism to maintain context throughout an auto-regressive generation of the image sequence, or model the generation of the characters and their background separately, to improve the rendering of characters. On the contrary, we embrace a completely parallel transformer-based approach, exclusively relying on Cross-Attention with past and future captions to achieve consistency. Additionally, we propose a Character Guidance technique to focus on the generation of characters in an implicit manner, by forming a combination of text-conditional and character-conditional logits in the logit space. We also employ a caption-augmentation technique, carried out by a Large Language Model (LLM), to enhance the robustness of our approach. The combination of these methods culminates into state-of-the-art (SOTA) results over various metrics in the most prominent SV benchmark (Pororo-SV), attained with constraint resources while achieving superior computational complexity compared to previous arts. The validity of our quantitative results is supported by a human survey.
Abstract:What are the root causes of hallucinations in large language models (LLMs)? We use Communication Complexity to prove that the Transformer layer is incapable of composing functions (e.g., identify a grandparent of a person in a genealogy) if the domains of the functions are large enough; we show through examples that this inability is already empirically present when the domains are quite small. We also point out that several mathematical tasks that are at the core of the so-called compositional tasks thought to be hard for LLMs are unlikely to be solvable by Transformers, for large enough instances and assuming that certain well accepted conjectures in the field of Computational Complexity are true.
Abstract:The problem of continual learning in the domain of reinforcement learning, often called non-stationary reinforcement learning, has been identified as an important challenge to the application of reinforcement learning. We prove a worst-case complexity result, which we believe captures this challenge: Modifying the probabilities or the reward of a single state-action pair in a reinforcement learning problem requires an amount of time almost as large as the number of states in order to keep the value function up to date, unless the strong exponential time hypothesis (SETH) is false; SETH is a widely accepted strengthening of the P $\neq$ NP conjecture. Recall that the number of states in current applications of reinforcement learning is typically astronomical. In contrast, we show that just $\textit{adding}$ a new state-action pair is considerably easier to implement.
Abstract:Continual learning, or lifelong learning, is a formidable current challenge to machine learning. It requires the learner to solve a sequence of $k$ different learning tasks, one after the other, while retaining its aptitude for earlier tasks; the continual learner should scale better than the obvious solution of developing and maintaining a separate learner for each of the $k$ tasks. We embark on a complexity-theoretic study of continual learning in the PAC framework. We make novel uses of communication complexity to establish that any continual learner, even an improper one, needs memory that grows linearly with $k$, strongly suggesting that the problem is intractable. When logarithmically many passes over the learning tasks are allowed, we provide an algorithm based on multiplicative weights update whose memory requirement scales well; we also establish that improper learning is necessary for such performance. We conjecture that these results may lead to new promising approaches to continual learning.
Abstract:Under what conditions do the behaviors of players, who play a game repeatedly, converge to a Nash equilibrium? If one assumes that the players' behavior is a discrete-time or continuous-time rule whereby the current mixed strategy profile is mapped to the next, this becomes a problem in the theory of dynamical systems. We apply this theory, and in particular the concepts of chain recurrence, attractors, and Conley index, to prove a general impossibility result: there exist games for which any dynamics is bound to have starting points that do not end up at a Nash equilibrium. We also prove a stronger result for $\epsilon$-approximate Nash equilibria: there are games such that no game dynamics can converge (in an appropriate sense) to $\epsilon$-Nash equilibria, and in fact the set of such games has positive measure. Further numerical results demonstrate that this holds for any $\epsilon$ between zero and $0.09$. Our results establish that, although the notions of Nash equilibria (and its computation-inspired approximations) are universally applicable in all games, they are also fundamentally incomplete as predictors of long term behavior, regardless of the choice of dynamics.
Abstract:Despite their impressive performance in NLP, self-attention networks were recently proved to be limited for processing formal languages with hierarchical structure, such as $\mathsf{Dyck}_k$, the language consisting of well-nested parentheses of $k$ types. This suggested that natural language can be approximated well with models that are too weak for formal languages, or that the role of hierarchy and recursion in natural language might be limited. We qualify this implication by proving that self-attention networks can process $\mathsf{Dyck}_{k, D}$, the subset of $\mathsf{Dyck}_{k}$ with depth bounded by $D$, which arguably better captures the bounded hierarchical structure of natural language. Specifically, we construct a hard-attention network with $D+1$ layers and $O(\log k)$ memory size (per token per layer) that recognizes $\mathsf{Dyck}_{k, D}$, and a soft-attention network with two layers and $O(\log k)$ memory size that generates $\mathsf{Dyck}_{k, D}$. Experiments show that self-attention networks trained on $\mathsf{Dyck}_{k, D}$ generalize to longer inputs with near-perfect accuracy, and also verify the theoretical memory advantage of self-attention networks over recurrent networks.
Abstract:On-line firms deploy suites of software platforms, where each platform is designed to interact with users during a certain activity, such as browsing, chatting, socializing, emailing, driving, etc. The economic and incentive structure of this exchange, as well as its algorithmic nature, have not been explored to our knowledge; we initiate their study in this paper. We model this interaction as a Stackelberg game between a Designer and one or more Agents. We model an Agent as a Markov chain whose states are activities; we assume that the Agent's utility is a linear function of the steady-state distribution of this chain. The Designer may design a platform for each of these activities/states; if a platform is adopted by the Agent, the transition probabilities of the Markov chain are affected, and so is the objective of the Agent. The Designer's utility is a linear function of the steady state probabilities of the accessible states (that is, the ones for which the platform has been adopted), minus the development cost of the platforms. The underlying optimization problem of the Agent -- that is, how to choose the states for which to adopt the platform -- is an MDP. If this MDP has a simple yet plausible structure (the transition probabilities from one state to another only depend on the target state and the recurrent probability of the current state) the Agent's problem can be solved by a greedy algorithm. The Designer's optimization problem (designing a custom suite for the Agent so as to optimize, through the Agent's optimum reaction, the Designer's revenue), while NP-hard, has an FPTAS. These results generalize, under mild additional assumptions, from a single Agent to a distribution of Agents with finite support. The Designer's optimization problem has abysmal "price of robustness", suggesting that learning the parameters of the problem is crucial for the Designer.
Abstract:The history of computer science and brain sciences are intertwined. In his unfinished manuscript "The Computer and the Brain," von Neumann debates whether or not the brain can be thought of as a computing machine and identifies some of the similarities and differences between natural and artificial computation. Turing, in his 1950 article in Mind, argues that computing devices could ultimately emulate intelligence, leading to his proposed Turing test. Herbert Simon predicted in 1957 that most psychological theories would take the form of a computer program. In 1976, David Marr proposed that the function of the visual system could be abstracted and studied at computational and algorithmic levels that did not depend on the underlying physical substrate. In December 2014, a two-day workshop supported by the Computing Community Consortium (CCC) and the National Science Foundation's Computer and Information Science and Engineering Directorate (NSF CISE) was convened in Washington, DC, with the goal of bringing together computer scientists and brain researchers to explore these new opportunities and connections, and develop a new, modern dialogue between the two research communities. Specifically, our objectives were: 1. To articulate a conceptual framework for research at the interface of brain sciences and computing and to identify key problems in this interface, presented in a way that will attract both CISE and brain researchers into this space. 2. To inform and excite researchers within the CISE research community about brain research opportunities and to identify and explain strategic roles they can play in advancing this initiative. 3. To develop new connections, conversations and collaborations between brain sciences and CISE researchers that will lead to highly relevant and competitive proposals, high-impact research, and influential publications.