Abstract:We describe our contribution to the Strict and Strict-Small tracks of the 2nd iteration of the BabyLM Challenge. The shared task is centered around efficient pre-training given data constraints motivated by human development. In response, we study the effect of synthetic story data in language pre-training using TinyStories: a recently introduced dataset of short stories. Initially, we train GPT-Neo models on subsets of TinyStories, while varying the amount of available data. We find that, even with access to less than 100M words, the models are able to generate high-quality, original completions to a given story, and acquire substantial linguistic knowledge. To measure the effect of synthetic story data, we train LTG-BERT encoder models on a combined dataset of: a subset of TinyStories, story completions generated by GPT-Neo, and a subset of the BabyLM dataset. Our experimentation reveals that synthetic data can occasionally offer modest gains, but overall have a negative influence on linguistic understanding. Our work offers an initial study on synthesizing story data in low resource settings and underscores their potential for augmentation in data-constrained language modeling. We publicly release our models and implementation on our GitHub.
Abstract:Riddle-solving requires advanced reasoning skills, pushing LLMs to engage in abstract thinking and creative problem-solving, often revealing limitations in their cognitive abilities. In this paper, we examine the riddle-solving capabilities of LLMs using a multiple-choice format, exploring how different prompting techniques impact performance on riddles that demand diverse reasoning skills. To enhance results, we introduce RISCORE (RIddle Solving with COntext REcontruciton) a novel fully automated prompting method that generates and utilizes contextually reconstructed sentence-based puzzles in conjunction with the original examples to create few-shot exemplars. Our experiments demonstrate that RISCORE significantly improves the performance of language models in both vertical and lateral thinking tasks, surpassing traditional exemplar selection strategies across a variety of few-shot settings.
Abstract:Equivocation and ambiguity in public speech are well-studied discourse phenomena, especially in political science and analysis of political interviews. Inspired by the well-grounded theory on equivocation, we aim to resolve the closely related problem of response clarity in questions extracted from political interviews, leveraging the capabilities of Large Language Models (LLMs) and human expertise. To this end, we introduce a novel taxonomy that frames the task of detecting and classifying response clarity and a corresponding clarity classification dataset which consists of question-answer (QA) pairs drawn from political interviews and annotated accordingly. Our proposed two-level taxonomy addresses the clarity of a response in terms of the information provided for a given question (high-level) and also provides a fine-grained taxonomy of evasion techniques that relate to unclear, ambiguous responses (lower-level). We combine ChatGPT and human annotators to collect, validate and annotate discrete QA pairs from political interviews, to be used for our newly introduced response clarity task. We provide a detailed analysis and conduct several experiments with different model architectures, sizes and adaptation methods to gain insights and establish new baselines over the proposed dataset and task.
Abstract:Gender bias in machine translation (MT) systems poses significant challenges that often result in the reinforcement of harmful stereotypes. Especially in the labour domain where frequently occupations are inaccurately associated with specific genders, such biases perpetuate traditional gender stereotypes with a significant impact on society. Addressing these issues is crucial for ensuring equitable and accurate MT systems. This paper introduces a novel approach to studying occupation-related gender bias through the creation of the GOSt-MT (Gender and Occupation Statistics for Machine Translation) Knowledge Graph. GOSt-MT integrates comprehensive gender statistics from real-world labour data and textual corpora used in MT training. This Knowledge Graph allows for a detailed analysis of gender bias across English, French, and Greek, facilitating the identification of persistent stereotypes and areas requiring intervention. By providing a structured framework for understanding how occupations are gendered in both labour markets and MT systems, GOSt-MT contributes to efforts aimed at making MT systems more equitable and reducing gender biases in automated translations.
Abstract:The surge of state-of-the-art Transformer-based models has undoubtedly pushed the limits of NLP model performance, excelling in a variety of tasks. We cast the spotlight on the underexplored task of Natural Language Inference (NLI), since models trained on popular well-suited datasets are susceptible to adversarial attacks, allowing subtle input interventions to mislead the model. In this work, we validate the usage of natural language explanation as a model-agnostic defence strategy through extensive experimentation: only by fine-tuning a classifier on the explanation rather than premise-hypothesis inputs, robustness under various adversarial attacks is achieved in comparison to explanation-free baselines. Moreover, since there is no standard strategy of testing the semantic validity of the generated explanations, we research the correlation of widely used language generation metrics with human perception, in order for them to serve as a proxy towards robust NLI models. Our approach is resource-efficient and reproducible without significant computational limitations.
Abstract:Despite the rapid evolution and increasing efficacy of language and vision generative models, there remains a lack of comprehensive datasets that bridge the gap between personalized fashion needs and AI-driven design, limiting the potential for truly inclusive and customized fashion solutions. In this work, we leverage generative models to automatically construct a fashion image dataset tailored to various occasions, styles, and body types as instructed by users. We use different Large Language Models (LLMs) and prompting strategies to offer personalized outfits of high aesthetic quality, detail, and relevance to both expert and non-expert users' requirements, as demonstrated by qualitative analysis. Up until now the evaluation of the generated outfits has been conducted by non-expert human subjects. Despite the provided fine-grained insights on the quality and relevance of generation, we extend the discussion on the importance of expert knowledge for the evaluation of artistic AI-generated datasets such as this one. Our dataset is publicly available on GitHub at https://github.com/georgiarg/Prompt2Fashion.
Abstract:As NLP models become increasingly integral to decision-making processes, the need for explainability and interpretability has become paramount. In this work, we propose a framework that achieves the aforementioned by generating semantically edited inputs, known as counterfactual interventions, which change the model prediction, thus providing a form of counterfactual explanations for the model. We test our framework on two NLP tasks - binary sentiment classification and topic classification - and show that the generated edits are contrastive, fluent and minimal, while the whole process remains significantly faster that other state-of-the-art counterfactual editors.
Abstract:As machine learning (ML) models and datasets increase in complexity, the demand for methods that enhance explainability and interpretability becomes paramount. Prototypes, by encapsulating essential characteristics within data, offer insights that enable tactical decision-making and enhance transparency. Traditional prototype methods often rely on sub-symbolic raw data and opaque latent spaces, reducing explainability and increasing the risk of misinterpretations. This paper presents a novel framework that utilizes semantic descriptions to define prototypes and provide clear explanations, effectively addressing the shortcomings of conventional methods. Our approach leverages concept-based descriptions to cluster data on the semantic level, ensuring that prototypes not only represent underlying properties intuitively but are also straightforward to interpret. Our method simplifies the interpretative process and effectively bridges the gap between complex data structures and human cognitive processes, thereby enhancing transparency and fostering trust. Our approach outperforms existing widely-used prototype methods in facilitating human understanding and informativeness, as validated through a user survey.
Abstract:The advent of artificial intelligence has contributed in a groundbreaking transformation of the fashion industry, redefining creativity and innovation in unprecedented ways. This work investigates methodologies for generating tailored fashion descriptions using two distinct Large Language Models and a Stable Diffusion model for fashion image creation. Emphasizing adaptability in AI-driven fashion creativity, we depart from traditional approaches and focus on prompting techniques, such as zero-shot and few-shot learning, as well as Chain-of-Thought (CoT), which results in a variety of colors and textures, enhancing the diversity of the outputs. Central to our methodology is Retrieval-Augmented Generation (RAG), enriching models with insights from fashion sources to ensure contemporary representations. Evaluation combines quantitative metrics such as CLIPscore with qualitative human judgment, highlighting strengths in creativity, coherence, and aesthetic appeal across diverse styles. Among the participants, RAG and few-shot learning techniques are preferred for their ability to produce more relevant and appealing fashion descriptions. Our code is provided at https://github.com/georgiarg/AutoFashion.
Abstract:In this paper, we present our team's submissions for SemEval-2024 Task-6 - SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The participants were asked to perform binary classification to identify cases of fluent overgeneration hallucinations. Our experimentation included fine-tuning a pre-trained model on hallucination detection and a Natural Language Inference (NLI) model. The most successful strategy involved creating an ensemble of these models, resulting in accuracy rates of 77.8% and 79.9% on model-agnostic and model-aware datasets respectively, outperforming the organizers' baseline and achieving notable results when contrasted with the top-performing results in the competition, which reported accuracies of 84.7% and 81.3% correspondingly.