Machine Translation (MT) systems frequently encounter ambiguous scenarios where they must assign gender to certain occupations when translating without explicit guidance or contextual cues. While individual translations in such cases may not be inherently biased, systematic patterns-such as the repeated association of certain professions with specific genders-can emerge, reflecting and perpetuating societal stereotypes. This ambiguity challenges traditional instance-level single-answer evaluation approaches, as no single gold standard translation exists. To address this, we propose an approach that evaluates gender bias through aggregated model responses. Specifically, we introduce a methodology to detect gender imbalances between source texts and translations, a benchmarking dataset with ambiguous English inputs, and probability-based metrics to quantify a model's divergence from normative standards or reference distributions.